IOWA STATE UNIVERSITY Digital Repository

[Retrospective Theses and Dissertations](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Iowa State University Capstones, Theses and](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Dissertations](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages)**

1994

Synthesis, characterization and novel reactions of azasilatranes and azagermatranes

Yanjian Wan *Iowa State University*

Follow this and additional works at: [https://lib.dr.iastate.edu/rtd](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Inorganic Chemistry Commons](http://network.bepress.com/hgg/discipline/137?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Wan, Yanjian, "Synthesis, characterization and novel reactions of azasilatranes and azagermatranes " (1994). *Retrospective Theses and Dissertations*. 10657. [https://lib.dr.iastate.edu/rtd/10657](https://lib.dr.iastate.edu/rtd/10657?utm_source=lib.dr.iastate.edu%2Frtd%2F10657&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600

Order Number 9424271

Synthesis, characterization and novel reactions of azasilatranes and azagermatranes

Wan, Yanjian, Ph.D.

Iowa State University, 1994

 $\hat{\boldsymbol{\gamma}}$

Synthesis, characterization and novel reactions of azasilatranes and azagermatranes

 $$

Yanjian Wan

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> Department; Chemistry Major: Inorganic Chemistry

Approved;

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Gradyate College

Iowa State University Ames, Iowa

1994

DEDICATION

To My Father and Mother

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\frac{$

 \mathcal{L}_{max} . The \mathcal{L}_{max}

 \sim \sim

PAPER 4 NON-STRAIGHTFORWARD SUBSTITUTION REACTIONS AT PENTACOORDINATE SILICON: INTERESTING HYDRIDE AND FLUORIDE TRANSFER REACTIONS 125

GENERAL INTRODUCTION

Dissertation organization

This dissertation consists of four papers. The first two papers represent research as it was published, the third paper has been submitted and the fourth one will be submitted soon for journal publication. Literature citations, tables and figures pertain only to the paper in which they are included. Preceding the first paper is a brief general introduction. References cited in the general introduction are listed at the end of that chapter. Following the last paper is a general summary and acknowledgments.

Introduction

The initial goal of this research was to develop a series of pentacoordinate silicon compounds, i.e., aminoazasilatranes $R_2NSi(R'NCH_2CH_2)_3N(R, R' = H,$ alkyls etc.), exclusively coordinated by nitrogens as candidates for potential single-source MOCVD precursors for silicon nitride films. There is a large variety of applications of silicon nitride in industry, owing to its great hardness, wear resistance, chemical stability and high mechanical strength at temperatures up to 1300 °C. There have been several well-investigated and well-established methods to prepare bulk silicon nitride powder or ceramics¹. The manufacture of silicon nitride fibers or films, however, proceeds preferentially by the pyrolysis of organic silazanes etc. as precursors, because of the high melting point of silicon nitride^. The search for ideal precusors is still ongoing, because pyrolysis products of carbon-containing precursors are

generally contaminated with elemental silicon and carbon and silicon carbide which is virtually inseparable from silicon nitride³. The high molar ratio of nitrogen to silicon in aminoazasilatranes and no direct bonding between silicon and carbon in these proposed precursors, may favor the formation of pure silicon nitride upon pyrolysis.

A knowledge of the chemistry of a variety of azatranes has recently expanded substantially mainly owing to the endeavors of our group in synthesizing them as potential volatile precursors for other non-metallic nitrides and metal nitrides⁴. A broad range of azatranes is now known, including azatitanatranes⁵, azaboratranes⁶, azaaluminatranes⁷, azagalla-tranes⁸, azastannatranes⁹, azaphosphatrane cations¹⁰. In particular, a group of new alkyl and alkoxy azasilatranes has been readily synthesized by heating a mixture of tris(dimethylamino)silanes and tris(2-aminoethyl)amine (tren) or its tris-Nsubstituted derivatives in the presence of acidic catalysts 11 .

To our surprise, no report of aminoazasilatranes with amino substituents at the apical position of azasilatranes was ound in the primary literature. This does not indicate the lack of an interest in this type of compound however, since as early as in 1971, Le Grow claimed the synthesis

of aminoazasilatrane according to the above reaction in a patent¹². However, no characterization or yield was reported and no structural discussion was included. In our laboratory, repeated attempts to duplicate this synthesis produced only nonvolatile oligomeric materials^{13, 11}. Another approach we tried, based on the well-known amide-catalyzed reaction of silanes with amines¹⁴, was to mix dialkylamines such as $HN(CH_2CH_3)_2$ with hydroazasilatranes in the presence of $LiNEt₂$ as a catalyst but this also failed. Only the starting material was recovered quantitively.

As we shall see in papers 3 and 4, nucleophilically substituting the chloride in chlorazasilatranes $CISi(R'NCH_2CH_2)_3N(R' = H(2), CH_3(4))$ with various amide anions afforded some of the desired aminoazasilatranes. These new compounds indeed show high volatility, which makes them attractive candidates to be evaluated as silicon nitride precursors. In the course of the synthesis of aminoazasilatranes, an interesting hydride transfer mechanism, depending substantially on the steroelectronic properties of the nucleophiles as well as on the equatorial NR" functionalities, was observed. This process was also observed when various alkyl lithiums or phenyl lithium served as nucleophilic reagents, but not with metal alkoxides. The results of the comparison of the reactivity between chloroazasilatranes and the acyclic tetracoordinate analog $CISi[N(CH_3)_2]_3$ toward nucleophiles is in agreement with the well-established fact that the reactivity of extracoodinated silicon species is much higher than that of their tetravalent analogs¹⁵. In the reaction of 4 with C_6F_5Li , a novel fluoride transfer reaction is observed, resulting in the isolation of three new compounds, i.e., the fluoride transfer

product $\text{FSi}(CH_3NCH_2CH_2)_3N$, a substitution product $C_6F_5Si(CH_3NCH_2CH_2$ -)₃N, and the tetrafluorobenzyne insertion product $C_6F_5Si(CH_3NCH_2CH_2)_2$ - $(C_6F_4CH_3NCH_2CH_2)N$. The insertion product has been fully characterized by ¹H, ¹³C, ²⁹Si, DQF COSY, ¹H-¹³C HETCOR and VT¹⁹F NMR spectroscopy as well as an X-ray crystallographic analysis. The transannular Si-N bond (2.246 Â) is strong despite the presence of a seven-membered ring in the insertion product.

In the course of preparing hexa(dimethylamino)disilane according to a literature report¹⁶ as a starting material for an unsuccessful attempt to synthesize a "head to head" dimer containing two azasilatranes, a new compound that proved to be pentakis(dimethylamino)chlorodisilane was discovered. It is readily synthesized by mixing excess of $HMMe₂$ with $Si₂Cl₆$ in ether. This compound proved to be a precursor for generating bis(dimethylamino)silylene under relatively mild conditions.

Despite the extensive documentation of germatranes¹⁷ and thiogermatranes¹⁸, no azagermatranes were reported in the literature. As the first examples of such compounds, azagermatranes are readily accessible via conventional transamination reactions. The underlying driving force of the interesting interconversion between azagermatranes and less sterically hindered tripodal ligands to give the less sterically hindered atranes was elucidated with the aid of X-ray structure determinations of two azagermatranes.

References

- (1) Lange, H.; Wotting, G.; Winter, G, *Angew. Chem. Int. Ed. Engl.* **1991,** 30, 1579 and refemeces therein.
- (2) Peuckert, M; Vaahs, T.; Brunk, M. *Adv. Mater.* **1990,** 2, 398.
- (3) a) Mori, M,; Inoue, H.; Chirai, T. in Riley, F. L. (Ed.): *Progress in Nitrogen Ceramics,* NijhofF, Den Haag, **1983,** p. 149fF. b) Szweda, A.; Henry, A.; Jack, K. H. *Proc. Br. Ceram. Soc.* **1981,** 31,107. c) Yamaguchi, A. *Refractories* **1986,** 38, 2, *Engl. Transi.,* Tokyo, 1986.
- (4) Verkade, J. G. *Acc. Chem. Res.* **1993,** 26, 483.
- (5) Naiini, A. A.; Menge, W.; Verkade, J. G. *Inorg. Chem.* **1991,** 30, 5009.
- (6) Pinkas, J.; Gaul, B.; Verkade, J. G. *J. Am. Chem. Soc.* **1993,** 115, 3925.
- (7) Pinkas, J.; Verkade, J. G. ms in progress.
- (8) Pinkas, J.; Verkade, J. G. submitted for publication.
- (9) Plass, W.; Verkade, J. G. *Inorg. Chem.* **1993,** 32, 5153.
- (10) a) Laramay, M. A. H.; Verkade, J. G. *J. Am. Chem. Soc.* **1990,** 112, 9421. b) Laramay, M. A. H.; Verkade, J. G. *Z. Anorg. Allg. Chemie,* **1991,**605,163.
- (11) Gudat, G.; Verkade, J. G. *Organometallics* **1989,** 8, 2772.
- (12) Le Grow, G. E. US Patent 3,576,026,**1971;** *Chem. Abstr.* **1972,** 75, 37252.
- (13) Plass, W.; Verkade, J.G. unpublished results.
- (14) Pawlenko, S. in *Houben-Weyl,* Bd XIII/S; Georg Thieme Verlag: Stuttgart, 1980, s. 227f.
- (15) a) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. *Chem. Rev.*, 1993, 93, 1371 and references therein. b) Deiters, J. A.; Holmes, R. R. *J. Am. Chem. Soc.* **1990,***112,* 7197. c) Gordon, M. S.; Carrol, M. T.; Davis, L. P.; Burggraf, L. W. *J. Phys. Chem.* **1990,***94,* 8125.
- (16) Wiberg, E.; Stecher, O.; Neumaier, A,, *Inorg. Nucl. Chem. Letters.* **1965,**1,33.
- (17) Mironov, V. F. *Main Group Metal Chem.* **1989,** 12, 355.
- (18) Kakimoto, N.; Sato, K.; Mutdui, M.; Takada, T.; Akiba, M. *Heterocycles,* **1986,**24,3047.

PAPER 1. SYNTHESIS OF DIALKYLAMINO DISILANES

Reprinted with permission from *Inorg. Chem.* **1993,** 32, 431-433 Copyright 1993 © American Chemical Society

 $\ddot{}$

ABSTRACT

The only reported preparation of a hexakis-dialkylamino disilane, namely, (Me2N)3SiSi(NMe2)3, **1** (E. Wiberg et al., *Inorg. Nucl. Chem. Letters* **1965,** i, 33) was stated to proceed quantitatively. In our hands, this preparation repeatedly gave a mixture of only -40% **1** and -60% of the new compound (Me2N)3SiSi(NMe2)2Cl (2). Compound **1** was made in 84% yield, however, by treating the aforementioned mixture with LiNMe₂ in THF, and 2 can be prepared in 91% yield from $Si₂Cl₆$ and excess HNMe₂ using ether as the solvent. Also reported here are syntheses for the new compounds $(MegN)_3SiSi(NMe_2)_2OMe$, $(Et_2N)_3SiSi(NEt_2)_3$ and $(MegN)_3SiOSi(NMe_2)_3$. The possible role of steric hindrance in the complete substitution of CI groups in Si2Cl6 by NR2 moieties is discussed. Crystallographic parameters for **1** are: monoclinic space group P2₁/c, $a = 9.563$ (1) \dot{A} , $b = 13.765$ (1) \dot{A} , $c = 8.515$ (9) \dot{A} , α = 90.0°, β = 115.313 (8)°, γ = 90.0° and Z = 2. The structural metrics give some indication of steric compression of the substituents around the waist of the molecule.

INTRODUCTION

In contrast to the well-known class of compounds, $Si(N₄)$, reports of the corresponding disilanes $(\geq N)_3$ SiSi($N\leq n$)₃ are restricted to a paper on the synthesis of $(OCN)_3SiSi(NCO)_3¹$ and a communication regarding the quantitative formation of $(MegN)_3SiSi(NMe_2)_3^2$ (1) via reaction 1. Although the

$$
Si2Cl6 + 12 HNMe2 \longrightarrow (Me2N)3SiSi(NMe2)3 + 6 [H2NMe2]Cl (1)
$$

latter preparation has been cited in reviews^{3,4} and a compilation,⁵ we have not been able to repeat it under the conditions given², namely, by allowing a mixture of Si_2Cl_6 and excess HNMe₂ mixed at liquid nitrogen temperature to warm slowly to room temperature, followed by extractive work-up and sublimation. In our hands, the reported procedure² consistently gave a mixture of $~1$ and $~1$ $~0\%$ of the heretofore unreported $(Me_2N)_3SiSi(NMe_2)_2Cl$, 2, which converts to 1 in 84% yield upon further treatment with LiNMe2. We also demonstrate that the chloro derivative 2 can be made in 91% yield when reaction 1 is carried out in diethylether at room temperature.

Also reported here are preparations of the new compounds $(MegN)_3SiSi(NMe_2)_2OMe (3), (Et_2N)_3SiSi(NEt_2)_3 (4), and (Me_2N)_3SiOSi(NMe_2)_3$ (5). Some steric crowding in 1 is reflected in the structural metrics determined for this compound by X-ray crystallography. Steric factors affecting the synthesis of hexakis-dialkylamino disilanes are discussed.

EXPERIMENTAL SECTION

All reactions were carried out with the strict exclusion of moisture using conventional vacuum lines and Schlenk techniques.^ Solvents such as tetrahydrofuran (THF), toluene, benzene and ether were dried by standard methods and distilled before use. LiNMeg, LiNEtg and HNMeg were purchased from Aldrich Chemical Co. and used as received unless stated otherwise. Si20Cl6 was purchased from Hiils Petrarch Systems and was used without further purification. $1H$ NMR spectra were recorded on a Nicolet NT-300 spectrometer using the proton impurity of the solvent as an internal reference. 13c NMR and 29Si NMR experiments were carried out on a Varian VXR-300 instrument. Mass spectra were obtained on a Finnigan 4000 (70 eV, EI) or a Kratos MS-50 (70 eV, EI, HRMS) instrument. Melting points were measured with a Thomas Hoover capillary apparatus and are uncorrected. Elemental analyses were performed by Desert Analytics, Tucson, Arizona.

Hexakis(dimethylamino)disilane, 1. To a dry thick-walled glass reaction tube equipped with a stirring bar was added 1.76 g (6.54 mmol) of Si_2Cl_6 via a nitrogen-flushed syringe. The tube was then cooled to -186 \degree C in liquid N₂ and 5.1 g (110 mmol, 40% molar excess) of precooled anhydrous HNMeg was then added to the tube via a 10 mL precooled syringe. The tube was then flame sealed and allowed to warm to room temperature slowly by decanting the liquid Ng from the dewar and allowing the tube to remain in the dewar. After the tube warmed to room temperature, a white thick pasty material was **11**

formed which was shaken from time to time during a 3 hr period. After cooling the tube in a freezer at -15 °C, the tube was quickly opened in the hood, and connected to a bubbler to monitor the evaporation of the excess HNMeg. The white solid residue was extracted with 4 x 18 mL of diethyl ether. Vacuum evaporation of the ether afforded 1.89 g of a crystalline solid. $1H$ NMR spectroscopy revealed the solid to be a mixture of 38% Si₂(NMe₂)₆ (1) and 62% Si2(NMe2)5Cl **(2).** Full characterization of these compounds is described later. The mixture sublimes easily at 60 $\,^{\circ}$ C at 10 x 10⁻³ torr and dissolves well in C_6H_6 , ether, THF and hexane. Attempted separation of the compounds by recrystallization from hexane was not successful because of their similar solubilities. The mixture was then dissolved in 25 mL of THF. The solution was added to 0.20 g of LiNMe₂ (3.9 mmol) and the mixture was refluxed for 2 h. After filtration and removal of solvent under vacuum, the solid residue was sublimed at 60 °C at 10 x 10-3 torr giving 1.70 g of **1** (5.32 mmol, overall yield 84%) as colorless crystals (mp, 217-19 °C with sublimation) which slowly decomposed in air to a white powder. ¹H NMR (300 MHz, C_6D_6) δ 2.53 (s, 36 H); ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 36 H); ¹³C NMR (75.429 MHz, C₆D₆) δ 37.12; 29Si NMR (59.585 MHz, CeDe) *à* -24.98; MS (EI, 70 eV, for 28si) *m/z* (relative intensity) 320.3 (6.7, M⁺), 277.3 (1.4, M⁺-NMe₂) 232.2 (0.90 M⁺-2NMe₂), 160.2 (100, M+/2), 116.1 (2.8, M+-Si(NMe2)4); HRMS *m/z* for Ci2H36N6Si2 (M+): calcd 320.25400, found 320.25416; Anal. calcd for $C_{12}H_{36}N_6Si_2$: C, 44.95; H, 11.32; N, 26.21. Found: C, 44.67; H, 11.42; N, 26.40.

Pentakis(dimethylamino)chlorodisilane, 2.

Method A. A solution of 1.66 g of Si_2Cl_6 (6.17 mmol) in 25 mL of THF was placed in a 50 mL three-necked flask. A 50 mL graduated addition funnel containing several small pieces of freshly cut sodium was attached to the flask. About 15 mL of HNMe2 was added to the addition funnel directly from a cylinder precooled in a freezer and the contents of the funnel were gently swirled for 5 min. By cooling the flask with liquid N_2 and stoppering the funnel, 8 mL ($\sim 130 \text{ mmol}$) of HNMe₂ was slowly vaporized into the flask via the side arm of the addition funnel. Formation of a colorless precipitate was observed immediately. The mixture was allowed to warm to room temperature and stirred for an additional hour while the excess HNMeg evaporated. The solid precipitate which formed was filtered and washed with 3×15 mL of C_6H_6 . The solvents were removed in vacuum and the solid product was sublimed at 65 °C and 10 x 10⁻³ torr to give 1.76 g of crystalline product 2 in 91% yield. See method B for characterization.

<u>Method B.</u> Anhydrous precooled HNMe₂ (13.2 g, 293 mmol) was added to a 50 mL precooled Schlenk flask. Hexachlorodisilane (7.85 g, 29.2 mmol) was then dissolved in 50 mL of toluene in a 100 mL flask. The flasks were connected with a nitrogen-flushed Tygon tube and HNMe2 was slowly transferred to the 100 mL flask by placing it in \sim -100 °C ethanol liquid nitrogen cooled cold bath.

After transfer of the HNMeg was complete, the mixture was allowed to warm to room temperature and was stirred for another 2 h. After filtration, all the volatiles were removed in vacuum leaving 8.05 g of a muddy solid. $1H$ NMR spectroscopy indicated that the solid was a mixture of ~55% Cl(Me2N)2SiSi(NMe2)3 **(2)** and -45% Cl(Me2N)2SiSi(NMe2)Cl **(3).** IH NMR (300 MHz, C_6D_6) δ 2.50 (s), (300 MHz, CDCl₃) δ 2.53 (s), ¹³C NMR (75.429 MHz, CDCl₃) δ 36.76). Both compounds sublime readily at 5 x 10⁻³ torr and 60 °C, and dissolve well in common organic solvents. The mixture of products was then stirred with 0.804 g of LiNMe₂ (15.7 mmol) in 30 mL of C_6H_6 for 1/2 h. After filtration, the solid residue was washed with 3×5 mL of C_6H_6 . Removal of benzene from the solution in vacuum afforded 7.8 g of **2.** Yield, 86% overall; mp, 157-159 °C; ¹H NMR (300 MHz, C₆D₆) δ 2.55 (s, 12 H, Si(NMe₂)₂Cl) 2.51 (s, 18 H, Si(NMe₂)₃); ¹H NMR (300 MHz, CDCl₃) δ 2.50 (s, 12 H, Si(NMe₂)₂Cl) 2.44 (s, 18 H, Si(NMe₂)₃); ¹³C NMR (75.429 MHz, C₆D₆) δ 37.07 (SiN(CH₃)₃) 37.28 $(Si(NMe_2)_2Cl)$; ²⁹Si NMR (59.585 MHz, C_6D_6) δ -26.63 (Si(NMe₂)₃) -14.54 (Si(NMe₂)₂Cl); MS (EI, 70 eV for ²⁸Si and ³⁵Cl) m/z (relative intensity) 311.2 $(1.25, M⁺)$, 276.2 $(0.3, M⁺-Cl)$, 267.1 $(3.1, M⁺-NMe₂)$, 107.0 $(1.55, M⁺-Si(NMe₂)₄)$, 116.1 (3.5, M+-Si(NMe2)3Cl); HRMS (El, 70 eV) *mlz* for CioH3oN5Si2Cl **(M+):** calcd 311.17283, found 311.17216; Anal. calcd for $C_{10}H_{30}N_5CISi_2$: C, 38.49; H, 9.69; Cl, 11.37. Found: C, 37.75, H, 9.68; Cl, 10.59.

Pentakis(dimethylamino)methoxydisilane, 3. In the dry box a mixture of 0.52 g (1.7 mmol) of **2** and 0.18 g (3.3 mmol, 94% excess) of NaOMe was placed in a 50 mL flask equipped with a side arm. The mixture was dissolved in 30 mL of THF and the solution was refluxed for 36 h. THF was removed under vacuum and the solid residue was extracted with 4×15 mL of C_6H_6 . After filtration, the benzene was removed in vacuo. The solid residue was subjected to sublimation at 0.2 torr at room temperature. After a small amount of liquid was collected and discarded during the first half hour, a crystalline crude product was obtained by sublimation at 2×10^{-2} torr and 45 °C. Yield, 42% : mp. 143-145 °C; ¹H NMR (300 MHz, C₆D₆) δ 2.59 (s, 12 H, Si(NMe₂)₂OMe), 3.44 (s, 3 H, OMe), 2.56 (s, 18 H, Si(NMe₂)₃); ¹H NMR (300 MHz, CDCl₃) δ 2.45 (s, 12 H, $Si(NMe_2)_2$ OMe), 3.35 (s, 3 H, OMe), 2.41 (s, 18 H, Si(NMe₂)₃); ¹³C NMR (75.429) MHz, C_6H_6) δ 49.41 (OMe), 37.20 (Si(NMe₂)₃), 37.33 (Si(NMe₂)₂OMe); ²⁹Si NMR $(59.585 \text{ MHz}, \text{C}_6\text{D}_6)$ δ -27.49 (Si(NMe₂)₂OMe), -24.00 (Si(NMe₂)₃); MS (EI, 70 eV for 28Si) *mlz* (relative intensity) 307.3 (13.4, M+), 263.2 (32.5, M+-NMe2) 219.2 $(7.5, M^{+}$ -2NMe₂), 160.1 (100.0, M⁺-Si(NMe₂)₂OMe), 147.1 (7.5, M⁺-Si(NMe₂)₃); HRMS (EI, 70 eV) m/z for C₁₁H₃₃N₅OS_{i2} (M⁺): calcd 307.22237, found 307.22283.

Hexakis(diethylamino)disilane, 4.

Method A. To 40 mL of a diethyl ether solution of 1.07 g of $LiNet_2$ (13.5) mmol) was added dropwise 0.34 g (1.30 mmol) of Si_2Cl_6 at -20 °C. The solution was allowed to warm to room temperature and was refluxed for 2 h. After filtration and removal of the solvent in vacuum, the solid residue was extracted with 3 x 10 mL of C_6H_6 . After the C_6H_6 was evaporated, 0.54 g of the liquid product was obtained in 85% yield. (See method B for characterization.)

Method B. Hexachlorodisilane (1.02 g, 3.80 mmol) was dissolved in 45 mL of diethyl ether and the solution was cooled to \sim -100 °C with a liquid N₂/ethanol slush bath. Anhydrous $HNEt₂$ (8.48 g, 116 mmol) was added to the solution. The mixture was allowed to warm to room temperature, it was stirred for 1 h and then it was refluxed for another $2 h$. The ether and excess $HNEt₂$ were removed by distillation at 1 atmosphere. The solid residue was extracted with 4 x 10 mL of C_6H_6 . After removal of the C_6H_6 under vacuum, 1.42 g of liquid product was collected. Yield, 77%; ¹H NMR (300 MHz, C_6D_6) δ 1.07 (t, 36 H, Me), 3.04 (q, 24 H, CH₂); ¹³C NMR (75.429 MHz, C₆D₆) δ 38.54 (NCH₂), 14.50 (Me); ²⁹Si NMR (59.585 MHz, C₆D₆) δ -23.24; MS (EI, 70 ev for ²⁸Si) *m/z* (relative intensity) 488.3 (0.04, M⁺) 416.4 (13.0 M⁺-NEt₂) 344.2 (4.0, M⁺-2NEt₂) 244.2 (11.4, M+/2) 172.2 (22.0, M+-4N**(Et2)).**

Hexakis(dimethylaxnino)disiloxane, 5. Hexachlorodisiloxane (0.631 g, 2.21 mmol) was added dropwise to a 25 mL of a THF solution containing 0.81 g (16 mmol, 20% excess) of LiNMe₂ at -20 °C. After stirring for 1 h at room temperature, the solution contained -30% of product **5** and -70% of the apparent intermediate $(MegN)_3SiOSi(NMe_2)_2Cl$ (¹H NMR (300 MHz, C_6D_6) δ 2.59 (s, 18 H (Me₂N)₃Si) 2.53 (s, 12 H, (Me₂N)₂SiCl). The solution was refluxed for 2 h causing the ¹H NMR peaks for the presumed (Me₂N)₃SiOSi(NMe₂)₂Cl to disappear. The THF was removed under vacuum and the solid residue was extracted with 4 x 10 mL of benzene. Removal of the benzene under vacuum afforded 0.71 g of product in 96% yield. Further purification was achieved by sublimation at 85 °C and 5 x 10⁻³ torr. Mp, 108-110 °C; ¹H NMR (300 MHz, C_6D_6) δ 2.57 (s, 36 H, Si(NMe₂)₃); ¹³C NMR (75.429 MHz, C₆D₆) δ 37.54; ²⁹Si NMR (59.585 MHz, C_6D_6) δ -51.47; MS (70 eV, EI for ²⁸Si) m/z (relative intensity) 336.3 (56.1, M⁺); 291.2 (50.6, M⁺-HNMe₂) 246.1 (94.7, M⁺-2HNMe₂); HRMS (70 eV, EI) *mIz* for Ci2H3eOSi2 (M+): calcd 336.24892, found 336.24817.

Pyrolysis of 2. Into a 5 mm NMR tube equipped with a septum was introduced 20 mg of $Si_2(NMe_2)_5Cl$ (2). Heating the compound at 190 $^{\circ}$ for 1/2 h caused browning of the colorless compound. ^{1}H , ^{13}C and ^{29}Si NMR spectroscopy revealed peaks for $SiCl(NMe₂)₃$, which were compared favorably with those of an authentic sample of SiCl(NMe₂)₃. (C₆D₆: 2.42, 37.10, -28.13) ppm, respectively).

Reaction of 1 with (H₂NCH₂CH₂)₃N (tren). Compound 1 (0.35 g, 1.1 mmol) was mixed with 0.32 g of tren (2.2 mmol) in a 5 mL flask. A particle of $(NH_4)_2SO_4$ was added as a catalyst and the mixture was heated at 130 °C. Compound 1, which sublimed onto the walls of the flask was scraped back to the bottom of the flask several times. The reaction mixture, which was monitored over a period of 2 h by ¹H NMR spectroscopy, contained only the reactants. In a second attempt, 0.71 g (2.2 mmol) of **1** and 0.63 g (4.4 mmol) of tren plus one drop of MegSiCl as a catalyst were mixed in a small thick-walled glass reaction tube. After flame sealing, the tube was heated and stirred at 225 \degree C for 48 h. At the end of this time ¹H NMR spectroscopy revealed only the presence of tren and 1.

Reaction of 1 with (HOCH2CH2)3N (TEA). To compound **1** (0.233 g, 0.73 mmol) was added 0.23 g (1.5 mmol) of TEA. The mixture was then dissolved in 10 mL of toluene and the solution was refluxed for 24 h. Only the starting materials tren and 1 could be detected by ${}^{1}H$ NMR spectroscopy at the end of this period, however. In the absence of solvent, 1.76 g (5.51 mmol) of **1** was mixed with 0.813 g (5.46 mmol) of tren and a catalytic amount of $(NH_4)_2SO_4$. Heating the mixture at 145 °C caused 1 to be sublimed onto the walls of the flask thus necessitating scraping the material back to the bottom of the flask several times during the 3 h period of reaction time. Although the reaction mixture turned brownish, it contained only the starting materials, as confirmed by IH NMR spectroscopy.

Crystal structure of 1. A clear crystal grown by refrigerating a pentane solution of **1** was sealed in a Lindemann capillary which was mounted on the diffractometer. Pertinent data collection and reduction information are listed in Table I. Lorentz and polarization corrections were applied. A correction based on a decay in the standard reflections of 3.9% was applied to the data. An absorption correction based on a series of Ψ -scans was also applied.

Axial photographs indicated that the lattice was monoclinic. The space group $P2_1/c$ was chosen based on the systematic absences, and the crystal structure was solved by direct methods.⁷ The structure refined well enough that at least one hydrogen of every methyl group could be found in a difference Fourier map. These peaks were used to generate ideal hydrogen positions with C-H distances set equal to 0.95 Å and with isotropic thermal parameters fixed at a factor of 1.3 times the corresponding carbon. All refinement calculations were performed on a Digital Equipment Corp. Micro VAX II Computer using the CAD4-SDP programs. 8

Table I. Crystal Data for 1

formula	$Si2N6C12H36$
fw	320.63
space group	$P2_1/c$
a, \AA	9.563(1)
b, \AA	13.765(1)
c, \mathring{A}	8.5151(9)
α , deg	90.0
β , deg	115.313(8)
γ , deg	90.0
V, \AA ³	1013(3)
$\mathbf z$	$\boldsymbol{2}$
d_{calc} , g/cm^3	1.05
crystal size, mm	$0.50 \times 0.40 \times 0.30$
$\mu(MoK_{\alpha})$, cm ⁻¹	1.7
data collec instrument	Enraf-Nonius CAD4
radiation	$MoK_{\alpha}(\lambda = 0.71073 \text{ Å})$
orientation reflections: range (20), deg 25, $17.6 < \theta < 32.1$	
t, °C.	25(1)
scan method	$\theta - 2\theta$
data collcn range, 20, deg	4.0-50.0
no. data collcd	3824
no. unique data	2385
tot. no. of data with F^2 ₀ > 2.5 $\sigma(F^2)$:	945

Table I. Continued.

no. of parameters refined	91
Trans. factors: max , min . $(\psi$ -scans)	0.999, 0.908
$\mathbf{R}^{\mathbf{a}}$	0.038
R_w^b	0.053
quality-of-fit indicator ^c	1.35
largest shift/esd, final cycle	0.05
largest peak, e/Å ³	0.23(2)
$aR = \Sigma F_0 - F_c / \Sigma F_0 $	

 ${}^{\rm b}{\rm R}_w=[\Sigma{\rm w}(\,|\,{\rm F}_{\rm o}|-|\,{\rm F}_{\rm c}\,|)^2/\Sigma{\rm w}\,|\,{\rm F}_{\rm o}\,|^{2}]^{1/2};\,{\rm w}=1/\sigma^2(\,|\,{\rm F}_{\rm o}\,|)$

 c Quality-of-fit = $[\Sigma w (\vert F_{o}\vert -\vert F_{c}\vert)^{2} (N_{obs}\text{-}N_{parameters})]^{1/2}$

 $\frac{1}{2}$

	for 1 ^a			
Atom	X	у	z	$B(\AA^2)$
SI	0.6340(2)	0.4972(1)	0.0359(2)	3.43(3)
N1	0.7084(6)	0.3862(4)	0.1203(6)	4.5(1)
N2	0.6636(5)	0.5169(4)	$-0.1471(6)$	4.5(1)
N3	0.7314(5)	0.5848(4)	0.1872(6)	4.8(1)
C ₂₁	0.5947(9)	0.6010(6)	$-0.2641(9)$	7.0(2)
C11	0.6336(9)	0.2936(5)	0.037(1)	6.7(2)
C31	0.7111(9)	0.5944(7)	0.3516(8)	6.8(2)
C ₂₂	0.7793(8)	0.4552(6)	$-0.185(1)$	7.3(2)
C32	0.8587(8)	0.6440(6)	0.189(1)	6.9(2)
C12	0.8625(6)	0.3701(6)	0.260(1)	7.9(3)

Table IL Table of Positional Parameters and Their Estimated Standard

Deviations

^Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3) * [a^2*B(1,1) + b^2*B(2,2) + c^2*B(3,3) +$ ab(cos gamma)*B(1,2) + ac(cos beta)*B(1,3) + bc(cos alpha)*B(2,3)]

RESULTS AND DISCUSSION

Syntheses. The report in 1965² of the preparation of $(MegN)3SiSi(NMe₂)3 (1)$ involved slow warming of a mixture of Si_2Cl_6 and excess HNMe₂ from liquid N2 temperature to room temperature in a sealed tube (reaction 1) followed by ether extraction and sublimation of the residue after evaporation. The only characterization of compound 1 mentioned was the measurement of its molecular weight in benzene, although no numerical results were given. 9 Repeated attempts to duplicate this preparation (including up to a 20:1 ratio of amine to $Si₂Cl₆$) resulted in ~40% 1 and ~60% of the new compound 2 (reaction 2). Compounds 1 and 2 show similar solubilities and easily cosublime.

$$
Si2Cl6 + xsHNMc2 \longrightarrow Si2(NMe2)6 + (Me2N)3SiSi(NMe2)2Cl + [H2NMe2]Cl
$$
 (2)

Moreover, in view of their similar molecular weights (320 and 311, respectively) it is not surprising that the molecular weight measurement of the sublimate reported in 1965² was concluded to be consistent with a quantitative yield of 1. When the sealed tube reaction was run with a $12:1$ ratio of $HMMe₂$ to $Si₂Cl₆$, a ¹H NMR singlet at 2.50 ppm was also observed which we tentatively attribute to the presence of some $Cl(Me_2N)_2SiSi(NMe_2)_2Cl$. This species (which disappears upon adding LiNMe₂) is also a main product in reaction 3 which is carried out at room temperature. Both compounds co-sublime easily, but the mixture is readily converted in good yield (86%) to 2 upon treatment with LiNMe₂ in benzene at room temperature. Conversion of the mixture of 1 and 2

$$
Si2Cl6 + 10HNMe2 \xrightarrow{\text{toluene}} Cl(Me2N2)SiSi(NMe2)2Cl + 2
$$
 (3)
\n~45%

to 1 in reaction 1 was accomplished by reaction 4. An 84% yield of 1 was realized after sublimation.

$$
1 + 2 + \text{LiNMe}_2 \quad \frac{\text{THF}}{\text{reflux}} \quad 1 + \text{LiCl} \tag{4}
$$

Compound 2 is converted to the corresponding methoxy derivative 3 via reaction 5. The sublimed crystalline product was realized in 42% yield. The low yield may be due to side reactions involving Si-Si breakage in the presence of nucleophiles.¹⁰

$$
2 + x \text{sNaOMe} \quad \frac{\text{THF}}{\text{reflux}} \quad (\text{Me}_2\text{N})_3 \text{SiSi(NMe}_2) \text{OMe} \tag{5}
$$

The new hexakisdiethylamino disilane 4 is formed in 85% yield in reaction 6 and in 77% yield in reaction 7. We find it somewhat surprising that this sterically hindered compound is formed in good yield under the mild

EtgP SizClg+ôLiNEtg (Et2N)3SiSi(NEt2)3 (6) 4

Etp Si^U+xsHNE^, 4 (7)

condition of refluxing ether. This result contrasts the nucleophilic Si-Si bond cleavage that has been reported to occur¹¹ (reaction 8). Related

Si^Clg+JHNEtg Cl2Si(NEt2)2 + ClHSi(NEt2)2 + 3[H2NEt2]Cl (8)

disproportionations of a variety of disilanes to mono and polysilanes have also been reported to be induced by tertiary **amines.** ^2

The new disiloxane 5 is apparently formed as a mixture with the mono chloro derivative shown in the first step of reaction 9. However, treatment with LiNMeg in the second step affords a crude yield of 96% of sublimable 5.

$$
O(SiCl3)2 \frac{xslinMe2}{THF, rt}
$$
 (Me₂N)₃SiOSi(NMe₂)₂Cl + O[Si(NMe₂)₃]₂ $\frac{LiNMe2}{THF, reflux} = 5$ (9)
 $\sim 70\%$ 5

Reactivities. Although **1** slowly hydrolyzes in **air,2** we have found it to be thermally stable at 230 °C for 48 hours in a sealed tube. In contrast, 2 disproportionates at 190 °C to form $Si(NMe₂)₃Cl$ as an identifiable product plus a oligomeric material perhaps arising from the silylene : $Si(NMe₂)₂$ which was mass spectrally detected as the cation : $Si(NMe₂)₂⁺$ (m/z 116, 3.5%) under EI conditions. Interestingly, the cation: $Si(NMe₂)Cl⁺$ ($m/z = 107$, 1.55%) was also detected in the mass spectrum of 2.

In an earlier publication we reported the synthesis of azasilatranes 6 via

condensation of $ZSi(NMe₂)₃$ with the corresponding tetramine.¹³ Silatranes of type 7 with a wide variety of Z groups can similarly be easily synthesized from $ZSi(NMe_2)$ ₃ and $(HOCH_2CH_2)$ ₃N (TEA).¹⁴ Attempts to react 1 with $(H_2NCH_2CH_2)_3N$ (tren) or $(HOCH_2CH_2)_3N$ to form disilatranes 8 under a variety of conditions failed, leaving starting materials as the only detectable species present.

Structure of 1. The ORTEP drawing of **1** is shown in Figure **1** and its positional coordinates are collected in Table II. The Si-Si bond distance of 2.369 (1) Å in 1 is within experimental error of $Si₂Me₆$ (2.34 (10) Å), slightly longer than in Me₃SiSiPh₃ (2.355 (1) Å), and shorter than in Si₂Ph₆ (2.519 (4) Å) and in $Si_2(t-Bu)_6$ (2.697 Å).¹⁵ The bond distance in 1 is close to that in Si_2H_6 (2.331 (3) \hat{A}^{15}), indicating little if any of the steric congestion that is likely to be present in

 $Si₂(t-Bu)₆$. The average Si-N distance in 1 (1.716(2) Å) is within experimental error of that in H₃SiNMe₂ (1.715 (4) Å) and ClSi(NMe₂)₃ (1.715 (2) Å).¹⁶ Interestingly, the average N-C bond distance for the distal methyl groups $(1.461 (4)$ Å) is shorter than for the proximal methyls $(1.490 (4)$ Å). Since the former distance lies within the range (1.446-1.468 Å) for HNMe₂, ClSi(NMe₂)₃ and other dialkylamino **silanes**,15 the proximal methyl groups may be responding to steric congestion around the "waist" of the molecule.

Although the angles around the silicons in **1** are close to tetrahedral, the Si-Si-N angles (average 110.22 (9)°) are somewhat larger, and the N-Si-N angles somewhat smaller (average 108.7 $(1)^\circ$). These data also suggest that there is rather close packing of the methyl groups in this molecule, particularly around its waist. The sum of the bond angles around the nitrogens (average 359.2°) indicates a near trigonal planarity geometry around these atoms, as is consistently observed in amino silane **compounds. ¹⁷**

NMR spectra. Although the assignments of the ${}^{1}H$ and ${}^{13}C$ NMR spectral shifts were quite straightforward, the 29Si chemical shift assignments deserve comment since they did not always follow the usual electronegativity argument. The association of the -26.63 and -14.54 ppm shifts in 2 with the $(Me_2N)_3Si$ and $Si(NMe_2)_2Cl$ moieties, respectively, was made in the present work on the basis of shifts to lower field observed for $29Si$ by others¹⁸ on substituting a chlorine for a less electronegative bromine in SiBr_4 (-92.7 ppm) to give SiClBr₃ (-69.8 ppm), and for an iodine in $SiI₄$ (-346.2 ppm) to give $SiCII₃$ (-245.9 ppm). On the other hand, the upfield 29Si chemical shift in 3 is

1. ORTEP drawing of 1 with ellipsoids drawn at the 50% probability level.

assigned to the Si(NMe₂)₂OMe fragment (-27.49 ppm) and the downfield one to the $(Me₂N)₃Si group (-24.00 ppm)$. The reasons for this are two-fold. First, an upfield shift is seen from $Si(NMe₂)₄$ (-28.13 ppm) to $Si(OMe)₄$ (-79.2 ppm¹⁸) and secondly, shielding is also observed from disilane 1 (-24.98 ppm) to disiloxane 5 (-51.47 ppm).

 $\bar{\bar{z}}$
ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation for a grant in support of this research. They also thank Dr. Victor Young, Jr. of the Iowa State Molecular Structure Laboratory for the solution of the X-ray crystal structure of 1 and the W. R. Grace Co. for a research sample of $(H₂NCH₂CH₂)₃N$ (tren).

REFERENCES

- (1) Hoefler, F.; Peter, W. *Z. Naturforsch. B, Anorg. Chem., Org. Chem.* **1975,***30B,* 282.
- (2) Wiberg, E.; Stecher, 0.; Neumaier, A,, *Inorg. Nucl. Chem. Letters,* 1965, *1,33.*
- (3) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. "Metal and Metalloid Amides: Syntheses, Structures, physical and chemical properties", Wiley and Sons: New York, 1980.
- (4) Hengge, E. *Topics Curr. Chem.,* **1974,** *51,* 35.
- (5) Fluck, E., "Si, Gmelin Handbook of Inorganic Chemistry", 1989, *4B,* 255.
- (6) Shriver, D. F.; Drezdon, M. A. "The Manipulation of Air Sensitive Compounds", Wiley and Sons: New York, 1986.
- (7) SHELXS-86, G. M. Sheldrick, Institut fur Anorganische Chemie der Universitat, Gottingen, F. R. G., 1986.
- (8) Enraf-Nonius Structure Determination Package; Enraf-Nonius; Delft, Holland. Neutral-atom scattering factors and anomalous scattering corrections were taken from the International Table for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV.
- (9) In a later paper (Hengge, E.; Pletka, H. D.; Hofler, F, *Monatsh. Chem.* **1970,** 101, 325) a δ ¹H value of 1 in CCl₄ of 2.56 ppm was reported which compares favorably with our value of 2.53 ppm in C_6D_6 . In this reference an interpretation of the IR spectrum of this compound was also put forth.

However, the origin of the sample was not given. We thank one of the referees for bringing this paper to our attention.

- (10) Sakurai, H.; Okada, A.; Kira, M.; Yonezawa, K., *Tetrahedron Letters,* 1971,*19,*1511.
- (11) Breederveld, H,; Thoor, T. J. W. Van; Waterman, H. I. *Res. Corresp. Suppl. to Research* 7, No. 5, 29 (1954); *Chem Zentralblatt,* 1950/154, *54S,* 1683.
- (12) Trandell, R. F.; Urry, G. J. *Inorg. Nucl. Chem.*, 1978, 40, 1305 and references therein.
- (13) Gudat, D.; Verkade, J. G. *Organometallics* 1989, *8,* 2772.
- (14) Voronkov, M. G.; Dyakov, V. M.; Kirpichenko, S. V. *J. Organomet. Chem.* 1982,*233,* 1 and references therein.
- (15) Lukevics, E.; Pudova, 0.; Sturkovich, R. "Molecular structure of organosilicon compounds", John Wiley and Sons: New York, 1989.
- (16) Vilkov, L. **v.;** Tarasenko, N. A. *Chem. Comm.* 1969, 1176.
- (17) Livant, P.; Mckee, M. L.; Worley, S. D. *Inorg. Chem.* 1983, *22,* 895.
- (18) Watkinson, P. J.; Mackay, K. M. *J. Organometal. Chem.* 1984, *275,* 39. Downfield shifts are also recorded in this article as x increases to 4 in $\rm SiCl_{x}Br_{4-x}$ and $\rm SiCl_{x}I_{4-x}$.

SUPPLEMENTARY MATERIAL

Table I. Anisotropc Displacement Coefficient (\AA^2) for 1

This form of the anisotropic displacement parameter is: $exp[-2\pi^2(h^2a^2U(1,1)+k^2b^2U(2,2)+l^2c^2U(3,3)+2hkabu(1,2)+2hlacU(1,3))$ +2klbcU(2,3)}], where a,b and c are reciproocal lattice constants

 $\hat{\mathcal{L}}$

Table II. Postional Parameters and Their Estimated Standard Deviations (A) for 1

Starred atoms were refined isotropically

 $\hat{\mathcal{A}}$

Table III. Bond Distances in Angstroms for 1

Estimated standard deviation in the least significant figure are given in parentheses

Atom 1 .	Atom ₂	Atom 3 ------	Angle -----	Atom 1 ------	Atom ₂ EXEKER	Atom 3 -------	Angle $\mathbf{H} = \mathbf{H} \times \mathbf{H}$
SI	SI	N1	110.35(9)	C11	N ₁	C12	111.7(2)
SI	SI	N ₂	109.87(9)	SI	N ₂	C21	122.2(2)
SI	SI	N ₃	110.44(9)	SI	N ₂	C ₂₂	123.7(2)
N1	SI.	N ₂	108.8(1)	C21	N ₂	C22	113.1(3)
N ₁	SI	N ₃	108.5(1)	SI	N ₃	C31	121.1(2)
N ₂	SI	N ₃	108.8(1)	SI	N3	C ₃₂	125.4(2)
SI	N1	C11	122.5(2)	C ₃₁	N ₃	C ₃₂	112.6(3)
SI	N1	C12	124.9(2)				

Table IV. Intromolecular Bond Angles for 1 in degrees.

*Numbers in parentheses are estimated standard deviation in the least significant digits.

PAPER 2. SYNTHESIS AND INTERCONVERSIONS OF AZAGERMATRANES

Reprinted with permission from *Inorg. Chem.* **1993,** 32, 79-82 Copyright 1993© American Chemical Society

 \mathbb{Z}^2

ABSTRACT

The syntheses of the first examples of the title compounds, namely, $Z_{\text{Ge(NRCH}_2\text{CH}_2)\text{3}}^{\mathbf{1}}$ (4, R = H, Z = Me; 5, R = Me, Z = Me; 6, R = H, Z = t-Bu; 7, $R = Me$, $Z = t-Bu$; 8, $R = Me$, $Z = NMe₂$) are reported. Syntheses of the new compounds $MeGe(NMe_2)$ 3 and t -BuGe(NMe₂)₃ and an improved synthesis of $Ge(NMe_2)_4$ are also recorded. The azagermatranes 5 and 7 are transformed to 4 and 6, respectively, in the presence of $(H_2NCH_2CH_2)_3N$. This reaction was not found to be reversible, however. Azagermatranes 4 or 5 and 6 or 7 in **I I** the presence of $(HOCH_2CH_2)_3N$ easily react to give $MeGe(OCH_2CH_2)_3N$ and t -BuGe(OCH₂CH₂)₃N, respectively. Because of steric factors, one or more of compounds 6, 7 or 8 may display weakened or even an absence of transannular Ge<-N bonding.

INTRODUCTION

Atranes (1) have been extensively studied for a variety of M atoms and Z substituents, and have been known for a long time, particularly for the Group 14 elements.¹ By contrast, Group 14 thiatranes (2) are much less well known.² Azatranes (3) were also quite rare (except for a few examples for $M =$

 $Si³$) until our interest in such compounds was aroused by their potential as MOCVD agents for metal and non-metal nitrides. Thus we have recently expanded this class of compounds to include a broad variety azasilatranes (Z = R, OR, NR₂),⁴ and the first examples of azatitanatranes (Z = NR₂),⁵ azavanadatranes $(Z = 0, NR),$ ^{6,7} azamolybdatranes $(Z = N),$ ⁶ azastannatranes $(Z = R, NR_2),$ ^{6,8} azaboratranes (Z = nothing),⁷ aza-alumatranes (Z = nothing),⁷ and azaphosphatrane cations $(Z = H^+).^9$ Herein we report the first azagermatranes, 4-8. We also demonstrate that the alkyl azagermatranes can be transformed to other azagermatranes and to germatranes. Thus 5 and 7 are labile with respect to replacement of their tetra-amino cage moiety by a $(HNCH_2CH_2)_3N$ fragment in the presence of $(H_2NCH_2CH_2)_3N$, giving 4 and 6, respectively. The azagermatranes 4-7 react with $(HOCH_2CH_2)_3N$ to yield the corresponding germatranes 9 and 10, Also reported here are

convenient preparations for the new compounds $RGe(NMe_2)_3$ ($R = Me$, t -Bu) and an improved synthesis for $Ge(NMe_2)_4$.

9, Z = Me $10, Z = t - Bu$

 \cdot

EXPERIMENTAL SECTION

All reactions were carried out with the strict exclusion of moisture by using standard inert-atmosphere and Schlenk techniques. Solvents such as tetrahydrofuran (THF), benzene and $Et₂O$ were dried by standard methods and distilled before use. Commercially available (Gelest, Inc.) MeGeCl₃, *t*- $BuGeCl₃$ and $GeCl₄$ were used without further purification. LiNMe₂ was purchased from Aldrich and used directly. "Tren" $(H_2NCH_2CH_2)_3N$ was distilled at 85 °C at 15 x 10⁻³ torr from LiAlH₄ before use. Me₃-tren $((\text{MeHNCH}_2\text{CH}_2)_3\text{N})$ was prepared from the purified tren by using a standard procedure.¹⁰ Triethanolamine (TEA) was distilled under vacuum at 97 °C and 14×10^{-3} torr and stored over type 4\AA molecular sieves.

¹H NMR and ¹³C NMR spectra were recorded on a Nicolet-300 300 MHz spectrometer or on a Varian VXR-300 300 MHz instrument using the solvent peaks as an internal reference. Low and high resolution mass spectra were obtained on a Finnigan 4000 instrument (70 eV, EI) and a Kratos MS-5 spectrometer (70 eV, EI), respectively. Melting points were measured with a Thomas Hoover capillary apparatus and are not corrected. Elemental analysis were performed by Desert Analytics, Tucson, Arizona.

Tris(diinethylamino)methylgermane, MeGe(NMe2)3. To a **20** mL suspension of 1.08 g of LiNMe₂ (21.2 mmol) in ether cooled to -50 °C, was added dropwise 1.27 g of MeGeCl₃ (6.54 mmol) via a nitrogen-flushed syringe. A white precipitate formed instantly. The mixture was allowed to warm to room temperature and was stirred for an additional 2h. After filtration, the solid residue was washed with 3×5 mL of ether. The ether was removed under vacuum, giving a cloudy liquid which was distilled at 40 °C and 1.0 torr, affording 1.10 g of colorless product in 77% yield. MeGe(NMe₂)₃ decomposes in air, instantly forming a white solid which is soluble in water. Liquid density, 1.03 g/mL; ¹H NMR (C₆D₆): 2.60 (s, 18 H, NMe₂), 0.21 (s, 3 H, GeMe); ¹³C NMR (C₆D₆): 39.92 (NMe₂), -8.49 (GeMe); MS (70 eV, EI for ⁷⁴Ge): *miz* (relative intensity, proposed ion) 221.2 (10.1, M+), 222.2 (31.1, M++1), 206.2 (1.5, M+-Me), 177.1 (100.0, M+-NMe2), 162.2 (2.1, M+-NMe2-Me), 133.1 (2.4, M+- 2NMe2), 118.1 (9.7, M+-2NMe2-Me).

*t***-Butyltris(dimethylamino)germane,** *t***-BuGe(NMe₂)₃. In 15 mL of ether** was dissolved 2.56 g (10.8 mmol) of BuGeClg. This solution was added dropwise to 25 mL of an ether suspension of 1.72 g (33.7 mmol) of LiNMe₂ cooled to -50 °C. The reaction mixture was allowed to warm to room temperature and was stirred for another 3 h. After filtration and removal of ether under vacuum, 2.83 g of crude product was obtained. Distillation at 80- 82 °C at 10 torr afforded 2.27 g of a crystalline product in 80% yield. Mp, 43-44 $\rm ^{o}C$; liquid density 1.01 g/mL; ¹H NMR (C₆D₆): 2.64 (s, 18 H, NMe₂), 1.16 (s, 9 H, CMe₃); ¹H NMR (CDCl₃): 2.59 (s, 18 H, NMe₂) 1.13 (s, 9 H, CMe₃); ¹³C NMR (CDCl₃): 41.06 (NMe₂), 29.25 (CMe₃), 0.55 (CGe); MS (70 eV, EI for 74Ge): *m/z* (relative intensity, proposed ion) 263.1 (1.1, M+), 219.1 (8.2, M+- $NMe₂$), 206.1 (47.1, M⁺-t-Bu), 162.0 (19.9, M⁺-NMe₂-t-Bu), 118.0 (100.0, M⁺- $2NM_{2}$ -*t*-Bu); HRMS for $C_{10}H_{27}N_3^{74}$ Ge (M⁺): calcd 263.14240, found 263.14185.

Tetrakis(dimethylamino)germane, Ge(NMe₂)₄. The synthesis of this compound via the reaction of GeBr₄ with excess $HMMe₂¹¹$ or by reacting GeCl₄ with excess HNMe₂ in a sealed ampoule was reported earlier.¹¹ An alternate route we devised was to add dropwise to a mixture of 2.66 g (52.2 mmol) of LiNMe₂ cooled in 40 mL of ether to -50 °C, a solution of 2.59 g (12.1) mmol) of $GeCl₄$. After stirring the solution for an additional 2 h at room temperature, filtration and vacuum evaporation of the ether, 2.91 g of crude product was obtained. Distillation at 50 °C at 0.2 torr (lit. 82-83 °C at 12 torr¹¹) gave 2.34 g of pure colorless product. Yield, 79%; ¹H NMR (C_6D_6) : d 2.64 (s, 24 H); ¹³C NMR (C₆D₆): d 40.24.

Methylazagermatrane 4. A mixture of 0.397 g (1.81 mmol) of $MeGe(NMe₂)₃$ and 0.250 g (1.71 mmol) of tren reacted after about 1 minute as evidenced by solidification of the mixture and the release of HNMe2. By sublimation at 5 x 10⁻³ torr at 75 °C, 0.31 g of colorless crystalline product was collected in 78% yield. Mp, 74-75 °C; ¹H NMR (C_6D_6) : 2.77 (t, 6 H, HNC H_2 , 3 J_{HH} = 5.7 Hz), 2.22 (t, 6 H, N(CH₂)₃), 0.54 (bd s, 3 H, NH), 0.08 (s, 3 H, MeGe); $13C$ NMR (C₆D₆): 52.55 (HNCH₂), 38.59 (N(CH₂)₃), 1.37 (MeGe); MS (70 eV, EI for 74Ge): *miz* (relative intensity, proposed ion) 232.1 (9.8, M+), 217.1 (100.0, M⁺-Me), 188.0 (80.9, M⁺-NH₂CHCH₂); HRMS (70 eV, EI) for C₇H₁₈N₄⁷⁴Ge (M+): calcd 232.07505, found 232.07441.

Methylazagermatrane 5. A mixture of $\text{MeGe(NMe}_2)$ ₃ (0.619 g, 2.82) mmol), Me₃-tren (0.420 g, 2.24 mmol) and a catalytic amount of $(NH_4)_2SO_4$ was heated at 125 °C with stirring. After 3 h, release of $HMMe₂$ ceased and a yellowish liquid resulted which distilled very slowly at 60 $\mathrm{^{\circ}C}$ at 5 x 10⁻² torr giving 0.48 g of colorless liquid product in 63% yield. ¹H NMR (C_6D_6): 2.71 (s, 9 H, NMe), 2.66 (t, 6 H, MeNCH₂, 3 J_{HH} = 5.7 Hz), 2.24 (t, 6 H, N(CH₂)₃, 0.56 (s, 3 H, MeGe); ¹³C NMR (C₆D₆): 49.64 (NMe), 49.47 (MeNCH₂) 39.14 (N(CH₂)₃), -0.28 (MeGe); MS (70 eV, EI for ⁷⁴Ge): *m/z* (relative intensity, proposed ion) 274.2 (13.1, M⁺), 259.1 (25.4, M⁺-Me), 215.1 (10.8, M⁺-CH₂CHNMeH), 200.1 (2.8, M^+ -Me-CH₂CHNMeH); HRMS (70 eV, EI) for C₁₀H₂₄N₄⁷⁴Ge (M⁺): calcd 274.12200, found 274.12163.

/-Butylazagermatrane 6. A mixture of 0,909 g (3.47 mmol) of *t-*BuGe(NMe₂)₃ and 0.456 g (3.12 mmol) of tren was heated at 120 °C for 2 h. Because a ¹H NMR spectrum of a sample of the mixture in C_6D_6 revealed no evidence of reaction, a catalytic amount of $(NH_4)_2SO_4$ was added. After stirring the mixture at 120 °C for another 2 h, the mixture stopped evolving HNMe2 and upon cooling it to room temperature, it solidified. The colorless crystalline product was collected in 54% yield by sublimation at 55 °C at 14 x 10⁻³ torr. Mp, 75-76°; ¹H NMR (C_6D_6) : 2.74 (t, 6 H, HNCH₂, ³J_{HH} = 5.4 Hz), 2.20 (t, 6 H, N(CH₂)₃), 1.10 (s, 9 H, t-BuGe), 0.62 (bd s, 3 H, NH); ¹³C NMR (C_6D_6) : 53.40 (HNCH₂), 39.00 (N(CH₂)₃) 28.51 (Me), 26.53 (GeC); MS (70 eV, EI for 74 Ge): m/z (relative intensity, proposed ions) 274.2 (0.7, M⁺), 217.1 (100.0, M⁺-Bu); HRMS for $C_{10}H_{25}^{74}$ GeN₄ (M⁺+H): calcd 275.12982, found 275.12984; HRMS (70 eV, EI) for $C_6H_{15}T^4Gen_4 (M^+ - t B u)$: calcd 213.05397, found

213.05375; Anal. calcd for $C_6H_{15}GeN_4$: C, 44.01; H, 8.86; N, 20.52. Found: C, 43.83; H, 9.15; N, 20.54.

 t -Butylazagermatrane 7. A mixture of 0.400 g (1.53 mmol) of t -Bu(NMe₂)₃, Me₃-tren (0.24 g, 1.28 mmol) and a catalytic amount of $(NH_4)_2SO_4$ as a catalyst was stirred at 120 °C until escape of dimethylamine ceased (2.5 h). The crude liquid was distilled very slowly at 50 \degree C at 20 x 10⁻³ torr, affording 0.29 g of product in 61% yield. ¹H NMR (C_6D_6): 2.64 (s, 9 H, NMe), 2.53 (t, 6 H, MeNCH₂, 3 J_{HH} = 5.0 Hz), 2.33 (t, 6 H, N(CH₂)₃), 1.39 (s, 9 H, CMe₃); ¹³C NMR (C₆D₆): 53.52 (NMe) 50.18 (MeNCH₂), 38.11 (N(CH₂)₃), 31.05 ($Me₃C$), 27.20 ($CMe₃$); MS (70 eV, EI for ⁷⁴Ge): m/z (relative intensity, proposed ion) 316.2 (0.05, M⁺) 259.1 (100.0, M⁺-t-Bu), 202.0 (6.2, M⁺- $CH_2CHNHCH_3$); HRMS (70 eV, EI) for $C_{12}H_{27}N_4$ ⁷⁴Ge (M⁺): calcd 301.14547, found 301.14521.

Dimethylamino-azagermatrane 8. In a Schlenk tube, 0.645 g (2.60 mmol) of $Ge(NMe_2)_4$ was mixed with 0.443 g (2.36 mmol) of Me₃-tren and a catalytic amount of $(NH_4)_2SO_4$. The mixture was heated at 120 °C with stirring until no more $HMMe₂$ was evolved $(3 h)$. The crude product was purified by slow distillation at 45 °C at 25 x 10⁻³ torr giving 0.15 g of pure liquid product in (19% yield). ¹H NMR (C_6D_6): 2.97 (s, 6 H, NMe₂), 2.73 (s, 9 H, GeNMe), 2.66 (t, 6 H, MeNC H_2 , ${}^{3}J_{HH} = 5.7$ Hz), 2.12 (t, 6 H, N(CH₂)₃; ¹³C NMR (C_6D_6): 50.40 (NMe) 50.30 (MeNCH₂), 41.34 (GeNMe₂), 39.05 (N(CH₂)₃); MS (70 eV, EI for 74Ge) *m/z* relative intensity, proposed ion): 303.2 (6.4; M+),

259.1 (100.0, M⁺-NMe₂), 246.2 (0.6, M⁺-NMeHCHCH₂) 202.1 (14.2, M⁺-NMe₂-NMeHCHCH₂); HRMS for C₁₁H₂₇N₅⁷⁴Ge (M⁺): calcd 303.14854, found 303.14823.

Reaction of 5 with tren: To a solution of 20 mg (0.073 mmol) of **5** in 0.45 mL of C_6D_6 in an NMR tube, was added 11 mg (0.075 mmol) of tren. The ¹H NMR spectrum recorded 1/2 h later revealed that ~50% of 5 had converted to 4. Eight h later, the reaction was complete, as evidenced by the ${}^{1}H$ and ${}^{13}C$ NMR spectra which revealed the presence of free Meg-tren, and 4 as the only germanium-containing product.

Reaction of 7 with tren. To a solution of 30 mg (0.095 mmol) of **7** in 0.5 mL of C_6D_6 in an NMR tube was added 15 mg (0.096 mmol) of tren. The product, *t*-butylazagermatrane 6 was detected instantly by ¹H NMR spectroscopy. After 12 h, the reaction was complete as evidenced by ${}^{1}H$ and ¹³C NMR spectroscopy which revealed only the presence of *t*butylazagermatrane 6 and free Meg-tren.

Reactions of 4-7 with TEA. These NMR tube experiments were carried out in C_6D_6 (0.5 mL) at ambient temperature using approximately equimolar amounts (-0.07-0.1 mmol) of each of the title compounds and TEA. Monitoring the reactions by 1H NMR spectroscopy showed that the reaction was over for **4** and **5** by the time the spectra were run. In the case of **6** the reaction took about 14 h whereas for **7** it was complete by the time the spectrum was run. The purity of the reaction products in all of these mixtures was also verified by 13 C NMR spectroscopy.

Reaction of MeGe(NMe2)3 and #-BuGe(NMe2)3 with TEA. These NMR tube experiments were carried out as described in the proceding paragraph except ca. equimolar amounts of the title compounds $(-0.02-0.04 \text{ mmol})$ and TEA were used. In the case of MeGe(NMe₂)₃, the reaction to form the corresponding germatrane was over immediately whereas with *t-*BuGe(NMe₂)₃ only 60% conversion was evident by ¹H NMR spectroscopy even after 44 h at reflux temperature.

DISCUSSION

Syntheses. An effective route to two new tris-dimethylamino germanes synthesized in this work is shown in reactions 1 and 2. The *tetrakis* analogue

$$
RGeCl3 + 3LiNMe2 \xrightarrow{Et2O} RGe(NMe2)3 + 3LiCl
$$
\n
$$
R = Me, 77\% \text{ yield}
$$
\n
$$
R = t-Bu, 80\% \text{ yield}
$$
\n
$$
GeCl4 + 4LiNMe2 \xrightarrow{Et2O} Ge(NMe2)4 + 4LiCl
$$
\n
$$
79\% \text{ yield}
$$
\n(2)

 $Ge(NMe_2)_4$ was reported to form in ~79% yield in the reaction of GeBr₄ with excess HNMe₂ in cyclohexane.¹¹ Using GeCl₄, however, this procedure led to incomplete conversion and only by heating the products with excess HNMe2 to 110 °C in a sealed ampoule was $Ge(NMe₂)₄$ formed, and that in mediocre yield (58%) .¹¹ Because of the generally greater availability and considerably lower price of $GeCl₄$ compared with $GeBr₄$, the preparation under mild conditions described here (reaction 2) appears to be the method of choice.

The conditions for the syntheses of 4-7 (reactions 3-6) reflect the steric properties of the reactants. Thus whereas tren reacts in minutes in reaction 3 to give 4 at room temperature, the formation of 5-7 requires heating for 2 to 3 hours above 100 °C in the presence of a catalyst. NMR tube reactions in C_6D_6 of the two reactants in reactions 3-6 (without catalyst) revealed formation of 4 within minutes at room temperature, partial conversion to 5 after 10 h at reflux temperature, and no detectable 6 or 7 after 10 h at reflux

temperature. Interestingly, reaction 7 for the preparation of 8 (albeit in low yield) gives only a polymeric material when tren is used instead of Me₃-tren. This contrasting behavior between the two tetramines has also been noted

$$
Ge(NMe_{2})_{4} + (MeHNCH_{2}CH_{2})_{3}N \qquad \frac{120 \text{ °C}, 3 \text{ h}}{(NH_{4})_{2}SO_{4}} \qquad \frac{8}{(19\% \text{ yield})}
$$
 (7)

with other $M(NMe_2)_x$ species in our laboratories (e.g., $M = B⁸$ Al,⁸ Ti⁵ and $Si¹²$). It may be that these atoms activate the second hydrogen on the primary amine nitrogens to further substitution, thus leading to oligomers.

Because sterically unhindered azasilatranes⁴ and azastannatranes⁷ possess transannular bonds, it is expected that the same is true for 4 and 5. In view of the quasi-azasilatrane structure of 11 estabished by X-ray means, however,^{4a} it is possible that one or more of compounds 6-8 could exhibit an

analogous structure. Unfortunately, a comparison of the ¹H and ¹³C NMR data for these compounds with their acyclic precursors provides no meaningful trends that might suggest the presence or absence of a transannular bond in 4-8. Until suitable crystals of 4 or 6 for X-ray analysis can be grown (5, 7 and 8 are liquids) this question remains unanswered.

Azagermatrane interconversions. Although germanium compounds are well known to undergo monodentate ligand exchange in thermodynamically controlled equilibrium reactions,¹³ reactions 8 and 9 demonstrate that a

$$
5 + (H_2NCH_2CH_2)_3N \longrightarrow 4 + (MeHNCH_2CH_2)_3N
$$
\n(8)

\nthen

\n
$$
7 + (H_2NCH_2CH_2)_3N \longrightarrow 6 + (MeHNCH_2CH_2)_3N
$$
\n(9)

tetradentate amino ligand can be quantitatively replaced by another. Interestingly this reaction is not reversible to any detectable extent, suggesting that steric factors probably dominate in the replacement of the more sterically hindered (MeNCH₂CH₂)₃N moiety by the $(HNCH_2CH_2)_3N$ fragment. Such a replacement may also permit a stronger transannular interaction. It is worth noting that reaction 9 was carried out at room temperature in C_6D_6 and was ~50% complete in 0.5 h, whereas reaction 5 produced no detectable product at 120° for two hours unless a catalyst was present. (That a solvent effect is not operative here was shown by the absence of a detectable amount of 6 when reaction 5 was carried out for 10 h in refluxing C_6D_6 .) This result is contrary to expectation since reaction 5 is entropically and thermodynamically favored, and the reactant *t-* $BuGe(NMe₂)₃$ is less sterically encumbered than 7 in reaction 9. We are presently unable to explain this result satisfactorily. It is possible that if there is significant (albeit strained) transannular bonding in 7, the hybridizational promotion energy from a tetrahedral to a trigonal bipyramidal Ge geometry required in reaction 5 (which could be virtually absent in reaction 9) favors the azagermatrane interconversion in reaction 9. Reactions 10 and 11, carried out as NMR tube experiments, are quantitative at room temperature. For 4, 5 and 7 the reaction was over in

$$
4 \text{ or } 5 + (HOCH_2CH_2)_{3}N \xrightarrow{C_6D_6} 9 + \text{tren or } Me_{3} \text{tren}
$$
 (10)

$$
6 \text{ or } 7 + (\text{HOCH}_2\text{CH}_2)\text{yN} \qquad \frac{\text{C}_6\text{D}_6}{\text{C}_6} \qquad 10 + \text{tran or } \text{Me}_3\text{-tren} \tag{11}
$$

minutes whereas for 6 it took \sim 14 h. The reason for slowness of 6 to react may be due to steric inhibition. Although this factor is expected to be larger in the case of 7, it may be sufficiently large that the transannular bond is weakened or broken in this compound, thus rendering the Ge center more electrophilic. The replacement of three Ge-N linkages by three stronger Ge-0 bonds favors these reactions, as does the reduction in the steric requirements of the (0CH2CH2)3N group. The structures for **12, 13** and **14** determined by X-ray means reveal the presence of Ge<-N transannular bonds (2.238 (6), 2.24 and 2.24 Â, **respectively.** 14 This distance appears to be slightly shorter in **15** (2.19 (3) Â15) and **16** (2.150 (7) Â16). These data strongly suggest that **9** and **10** also contain transannular bonds, whose strengths are probably enhanced by the three electronegative alkoxy oxygens over the three less electronegative amido nitrogens present in azagermatranes. The reaction of 8 with TEA gave a complicated mixture, undoubtedly owing to competitive departure of the Me_2N substituent with that of the MeN nitrogens in the $MeNCH_2CH_2$)₃N moiety during nucleophilic displacement by the triol.

ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation for a grant in support of this research and to the W. R. Grace Company for a research sample of tren.

REFERENCES

- (1) Stanislav, N.; Voronkov, M. G.; Alekseev, N. V. *Topics in Curr. Chem.* **1986,***131,* 99 and references therein.
- (2) (a) Korecz, L.; Saghier, A. A.; Burger, K.; Tzchach, A.; Jurkschat, K. *Inorg. Chim. Acta,* **1982,** *58,* 243; (b) Kakimoto, N.; Sato, K.; Mutsui, M.; Takada, T.; Akiba, M. *Heterocycles,* **1986,** *24,* 3047.
- (3) Lukevits, E.; Zelchan, E. I.; Solomenikova, I. L; Liepins, E. E.; Yankovska, I. S.; Mazheika, I. B. *J. Gen. Chem. USSR,* **1977,** *47,* 98.
- (4) (a) Gudat, D.; Daniels, L. M.; Verkade, J. G. *J. Am. Chem. Soc.* **1989,** *111,* 8520. (b) Gudat, D.;Verkade, J. G. *Organometallics* **1989,** *8,* 2772. (c) Gudat, D.; Daniels, L. M.; Verkade, J. G. *Organometallics* **1990,** *9,* 1464. (d) Woning, J.; Daniels. L, M,; Verkade, J. G. *J. Am. Chem. Soc.* **1990,** *112,* 4601. (e) Gudat, D,; Verkade, J. G. *Organometallics* **1990,** *9,* 2172. (0 Woning, J.; Verkade, J. G. *J. Am. Chem. Soc.* **1991,** *113,* 944. (g) Woning, J.; Verkade, J. G. *Organometallics,* **1991,***10,* 2259.
- (5) Naiini, A.; Menge, W.; Verkade, J. G. *Inorg. Chem.,* **1991,** *30,* 5009.
- (6) Plass, W.; Verkade, J. G. *J. Am. Chem. Soc.,* **1992,***114,* 2275.
- (7) Pinkas, J.; Verkade, J. G., submitted.
- (8) Plass, W.; Verkade, J. G., ms in preparation.
- (9) (a) Lensink, G.; Xi, S.-K.; Daniels, L. M.; Verkade, J. G. *J. Am. Chem. Soc.* **1989,** *111,* 3478. (b) Laramay, M. A. H.; Verkade, J. G. *J. Am. Chem. Soc.* **1990,***112,* 9421. (c) Laramay, M. A. H.; Verkade, J. G. *Z. Anorg. Allg. Chemie,* **1991,** *605,* 163. (d) Verkade, J. G. *"Phosphorus*

Chemistry in America-1991", ACS Symposium Series, 1992, *486,* Ch. 5, p. 64. (e) Tang, Jiansheng; Laramay, M. A. H.; Verkade, J. G., *J. Am. Ckem. Soc.,* 1992,*113,* 3129.

- (10) Anderson, H. H. *J. Am. Chem. Soc.* 1952, *71,* 1421.
- (11) Pad, Z.; Jakoubkova, M.; Rericha, R.; Chvalovsky, V., *Collection Czechoslov. Chem. Commun.* 1971, *36,* 2181.
- (12) Here $Si(NMe₂)₄$, whether heated with or without a catalyst in the presence of tren or Me3-tren, does not give the corresponding dimethylamino-azasilatrane,^{4a} although Me₂NSi(HNCH₂CH₂)₃N has been claimed to be formed in this manner in a patent (LeGrow, G, E. U.S. Patent 3,576,026, 1971).
- (13) Burch, G. M.; Van Wazer, J. R. *J. Chem. Soc. (A)* 1966, 586.
- (14) Gurkova, S. N.; Gusev, A. I.; Alekseev, N. V.; Segel'man, R. I.; Gar, T. K. and Khromova, N. Yu. *J. Struct. Chem.* 1981, 155 and references therein.
- (15) Gurkova, S. N.; Gusev, A. I.; Segel'man, I. R.; Alekseev, N. V.; Gar, T. K.; Khromova, N. V. *J. Struct. Chem.* 1981,*22,* 461.
- (16) Zaitseva, G. S.; Mohammed, N.; Livantsova, L. I.; Tafeenko, V. A.; Aslanov, L. A.; Petrosyan, V. S. *Heteroatom Chem.* 1990,*1,* 439.

SUPPLEMENTARY MATERIAL

X-ray Structure Determinations of Two Azagermatranes

Since our paper on azagermatranes was submitted, we remained interested in an attempt to account for the interconversion of azagermatranes using additional experiments. One possible choice was the measurement of ⁷³Ge NMR chemical shifts of the azagermatranes $4-8$ to compare the relative strength of the transannular bonds. This was suggested by the effectiveness of the ²⁹Si NMR spectroscopic method to probe the relative strength of various azasilatranes¹. For example, increasing steric congestion around the silicon of azasilatrane by stepwise trimethylsilylation of the equatorial HN functionalities as shown below leads to downfield ^{29}Si chemcial shifts which indicate

weakening of transannular $Si < N$ bond². Indeed, an X-ray diffraction analysis showed that **4d** possesses the longest transannular bond (2.87 Â) ever found in an azasilatrane, consistent with the most downfield chemical shift. We decided to extend this approach to the study of azagermatranes with ^{73}Ge NMR spectrosocpy. Also we were encouraged by the reports of ^{73}Ge shifts for germatranes. 3

However, we have not been able to observe any ⁷³Ge resonance for the *t*butylazagermatranes 6 or methylazagermatrane 4. To our surprise, the resonances of t -butylgermatranes 12 and methylgermatrane 10 were not seen either, which were prepared by adding one equivalent of triethanolamine (TEA) to 6 and 4, respectively. The failure to observe 73 Ge signals may stem from the unfavorable ⁷³Ge NMR properties, i.e., low natural abundance (7.8%) and low detection sensitivity, the high nuclear spin $(I = 9/2)$ and hence a quadrupole moment⁴. Similar phenomena have been reported. For instance, Comparison of a ⁷³Ge NMR resonance for $GeCl₄·BPY$ (-313.7ppm) with that of $GeCl₄$ (30.9ppm) revealed the formation of a hexa-coordinated Ge species. However, no ⁷³Ge resonance was observed for analogs $GeBr_4·BPY$ and $GeI₄·BPY⁵$. In light of the fact that germatranes whose ⁷³Ge shifts have been recorded almost have alkoxys groups at the apical postion, the electric field gradient around the germanium atoms in 4, 6, 9 and 10 may be too large to observe any ^{73}Ge NMR peaks. Nevertheless, the ^{73}Ge chemical shifts we recorded for $Ge(NMe₂)₄$ (48.6ppm) and $GeCl₄$ (29.7 ppm) compared favorably with the literature values. $4a, 6$

A second approach to elucidating transannular bonding in these systems is the X-ray crystal structure analysis of azagermatranes. The molecular structures of both 4 and 6 have been determined. Their crystals were grown readily by sublimation at 30 and 50 $^{\circ}$ C at 15x10⁻³ mmHg for 4 and 6,

respectively. These crystals were extremely moisture sensitive and decomposed in air instantly, thus, they were mounted in 0.5 mm glass capillaries in a nitrogen-filled glove box and flame-sealed. The diffraction intensity data for 4 and 6 were collected on a RIGAKU AFC6R diffractometer with graphite monochromated Mo K α radiation and a 12 KW rotating anode generator.

For 4, cell constant and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 21 carefully centered reflections in the range of 25.18<20< 29.63° corresponded to a monoclinic cell. Based on the systematic absences of h01:l \neq 2n; 0k0:k \neq 2n and the successful solution and refinement of the structure, the space group was determined to be $P2₁/c$.

For 6, the similar operation using the setting angles of 12 carefully centered reflections in the range of 3O.95<20< 38.32° corresponded to a rhombohedral (hexagonal axes) cell with dimensions $a = 10.370(4)$ Å, $c =$ 21.416(2) Å. Based on the systematic absences of hkl:-h+k+l $\neq 3n$, packing considerations, a statistical analysis of intensity distribution and the sucessful solution and refinement of the structure, the space group was determined to be R3(h).

For both 4 and 6, the intensities of three representative reflections which were measured after every 150 reflections remained constant within the errors of measurement throughout data collection, thus no decay correction was applied. On the other hand, Lorentz and polarization corrections were applied. An empirical absorption correction, based on azimuthal scans of several reflections, was also applied which resulted in transmission factors ranging from 0.88 to 1.00 for 4 and from 0.84 to 1 for 6, respectively.

The crystal data and the experimental conditions for data collection, solution and structure refinement are listed in Table 1. The structures of 4 and 6 were solved by direct methods and were refined by a full-matrix leastsquares method using the TEXSAN(VAX) crystallographic software package⁸. All non-hydrogen atoms were refined with anisotropic thermal parameters. All the hydrogens in 4 and 6 were placed and refined. Neutral atom scattering factors were taken from Cromer and Waber.® The bond distances, bond angles and postional parameters for 4 are listed in Tables II, III, and IV, respectively. The corresponding data for 6 are given in Tables V, VI, VII, and VIII, respectively.

As illustrated in Figures 1 and 2, the germanium atoms in both 4 and 6 possess a somewhat distorted trigonal bipyramidal coordination sphere similar to that in germatranes ¹⁰, azasilatranes¹¹ or azastannatranes¹². The transannular bond distances, 2.395(1) Å in 4 and 2.361(6) Å in 6 are considerably longer than those in ethylgermatrane¹⁰ (2.24 Å) , *t*butylgermatrane¹⁰ (2.238(6) Å) and in phenylazasilatrane (2.132(4) Å)¹¹. However, these values are close to that in phenylazastannatrane¹² (2.415 Å) . This clearly demonstrates that the transannular Ge<-N bond exists in both 4 and 6 but is weaker than those in germatranes. This is consistent with the fact that nitrogen has lower electronegativity than oxygen. Based on the reasonable prediction that the transannular bonds in more sterically hindered N, N', N"'-trimethylazagermatranes are even weaker, it is easily understandable

that the strengthening of transannular bond contributes to the interconversion of sterically hindered azagermatranes in the presence of less sterically hindered tripodal ligands to give the less sterically hindered atrane systems.

References

- (1) a) Gudat, D,; Verkade, J. G. *Organometallics* 1989, 8, 2772. b) Sidorkin, V. F.; Pestunovich, V. A.; Voronkov, M. G. *Magn. Reson. Chem.* 1985, 23, 491.
- (2) Gudat, D.; Verkade, J. G. *J. Am. Chem. Soc.* 1989, 110, 3456.
- (3) a) Pestunovich, V. A.; Tandura, S. N.; Shterenberg, V. Z.; Khromova, N. Y.; Gar, T. K.; Mironov, V. F.; Voronkov, M. G. *Izv, Akad Nauk. SSSR, Ser. Khim.,* 1980, 959. b) Zelchan, G.I.; Lapsinya, A. F.; Solomennijova, I. I; Lukevits, E. L. *Zhurnal Obshchei Khimiiy* 1983, 53, 1069.
- (4) a) Harris, R. K.; Mann, B. E. *NMR and the Periodic Table,* Academica Press, London, 1978. b) Kaufmann, J.; Sahm, W.; Schwenk, A. *Z. Nauturforsch,* 1971, 26a, 1384
- (5) a) Kupce, E.; Ignatovich, L. M.; Lukevics, E. *J. Organomet. Chem.* 1989, 372, 189. b) Kupce, E.; Lukevics, E.; Viktoorv, N. A.; Gar, T. K. *J. Organomet. Chem.* 1989, 372, 187.
- (6) a) Liepins, E.; Zicamane, L; Lukevics, E. *J. Organomet. Chem.* 1986, 306, 327. b) Liepins, E.; Zicamane, L; Lukevics, E. *J. Organomet. Chem.* 1988, 341,315.
- (7) Gilmore, C. J. *J. Appl. Cryst* 1984, 17, 42-46. Univ. of Glasgow, Scotland.
- (8) Texsan-Xray Structure Analysis Package; Molecular Structure Corporation, Woodlands, TX, 1985.
- (9) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol IV.
- (10) Gurkova, S. N.; Gusev, A. I.; Alekseev, N. V.; Segelman, R. I.; Gar, T. K.; Khromova, N. Yu. *J. Struct. Chem.* 1981, 155 and references therein, b) Gurkova, S. N.; Guser, A. I.; Akekser, N.V.; Segelmna, R. I.; Gar, T. K.; Khromora, N. Yu. *Zhural Strukturnoi Khimi,* 1983, 24, 162.
- (11) Kupce, E.; Liepish, E, E.; Lapsina, A.; Zelchan, G. I.; Lukevics; E. E. *J. Organomet. Chem.* 1983, 333,1.
- (12) Plass, W.; Verkade, J. G. *Inorg. Chem.* 1993, 32, 5153. b) Plass, W.; Verkade, J. G. *Inorg. Chem.* 1993, 32, 5154.

	4	6
empirical formula	$\text{GeV}_4\text{C}_7\text{H}_{18}$	$GeV_4C_{10}H_{21}$
fw	241.92	269.89
color; habit	colorless, monoclinic	colorless, monoclinic
crystal size (mm)	0.40x0.40x0.35	.400x .60 x 0.20
crystal system	monoclinic	rhombohedral
space group	$P2_1/c(H14)$	R3(h) (#148)
α (Å)	$8.650(2)$ Å	$10.370(4)$ Å
$b(\AA)$	$8.3244(9)$ Å	$10.370(4)$ Å
$c(\AA)$	$13.845(2)$ Å	$21.416(2)$ Å
a (deg)	90.0°	90.0°
b (deg)	$95.40(1)$ °	90.0°
g (deg)	90.0°	120.0°
volume $(\AA)^3$	992.5(2)	1994(1)
\mathbf{z}	$\boldsymbol{4}$	6
d_{calcd} (g/cm ³)	1.619	1.349
abs coeff $(cm-1)$	30.05	22.52
F(000)	524	846
diffractometer	Rigaku AFC6R	Rigaku AFC6R
radiation	MoKa (0.71069 Å)	$MoKa (0.71069 \text{ Å})$
temperature(K)	296	296
monochromator	graphite crystal	graphite crystal

Table I. Crystallographic Data for 4 and 6

 $\sim 10^{11}$

Table I. Continued.

2ø scan range	6.76 to 50.1	6.0 to 60.1
scan type	ω -20	ω -20
scan speed (deg/min)	16.0 (in omega)	16.0 (in omega)
		$(2$ rescans)
2θ max	50.1	60.1
collected reflcns	4229	2761
independent reflecns	1899	1303
R_{int} (%)	5.1	5.8
observed reflcns, nobs	922 (I $\geq 3.00\sigma$ (I))	872 (I > 3.00 σ (I))
p-factor	0.03	0.03
Least-square Weights	$4F_0^2/\sigma^2(F_0^2)$	$4F_0^2/\sigma^2(F_0^2)$
no. of variable, n _{var}	109	46
solution	direct methods	direct methods
$\frac{1}{1}$ rgest and mean D/s	0.001, 0.000	0.001, 0.000
data-to-parameter ratio	8.46	18.96
largest peak $(e \cdot A^{-3})$	0.58	0.56
largest hole $(e \cdot A^{-3})$	-0.47	-0.55
$R(\%)$ a	4.7	4.2
R_{uv} (%)b	7.0	5.1
GOF ^c	3.23	1.57

 $R^a = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$

 $R_w^b = \left[\Sigma w(\left|F_0\right| - \left|F_c\right|\right)^2 / \Sigma w \left|F_0\right|^2\right]^{1/2}; w = 1/\sigma^2(\left|F_0\right|)$

GOF^c= $[\Sigma w(|F_0|-|F_c|)^2(N_{obs-Nparameters})]^{1/2}$

Figure 1. The Molecular structure of MeGe($HNCH_2CH_2$)₃N 4 (a) topview showing the propeller-like conformation of the molecule and eclipse of the axial atoms.

 $\hat{\boldsymbol{\gamma}}$

Figure 1. Continued (b) sideview showing the TBP geometry around germanium of 4.

Figure 2. The Molecular structure of t-BuGe($HNCH_2CH_2$)₃N 6, (a) topview showing the propeller-like conformation of the molecule and eclipse of the axial atoms

 $\hat{\mathcal{A}}$

Figure 2. Continued b) sideview showing the TBP geometry around germanium

Table IL Intromolecular Bond Distances (Â) and Bond Angles (degs) for 4

^aEstimated standard deviation in the least significnat figure are given in parentheses

atom	\mathcal{L}_{\bullet}	Ý	\overline{z}	B(eq)
Ge	0.4416(1)	0.2524(2)	0.40545(6)	2.37(4)
11(1)	0.4379(9)	0.246(2)	0.5404(5)	3.2(3)
H(2)	0.377(2)	0.453(2)	0.339(1)	8(1)
N(3)	(1.382(1))	0.069(1)	0.3455(6)	2.0(4)
11(4)	0.1689(8)	0.241(1)	C.4194(5)	2.6(3)
\subset	0.667(1)	0.262(2)	0.3913(8)	4.3(5)
C(1)	0.294(1)	0.245(3)	0.5829(7)	6.6(7)
C(2)	C.156(1)	0.295(2)	0.5213(8)	5.1(7)
C(3)	C.221(2)	0.502(2)	0.328(1)	5(1)
C(4)	C.101(2)	0.366(2)	0.344(1)	5.4(7)
C(5)	0.224(2)	0.010(2)	0.333(1)	6(1)
C(5)	0.125(1)	0.087(2)	0.396(1)	4.1(6)
H(1)	0.5328	0.2436	0.5810	3.8
H(2)	0.4536	0.5188	0.3135	9.1
H(3)	0.4601	0.0055	0.3203	2.4
H(4)	0.7162	0.1704	0.4216	5.2
H(5)	0.6827	0.2623	0.3244	5.2
H(6)	0.7091	0.3566	0.4212	5.2
H(7)	0.2763	0.1388	0.6041	7.9
H(8)	0.3040	0.3153	0.6373	7.9
H(9)	0.1479	0.4086	0.5227	6.1
H(10)	0.0668	0.2482	0.5446	6.1
E(11)	C.2080	0.5858	0.3729	6.3
H(I2)	C.1988	0.5421	0.2636	6.3
H(13)	C.0737	0.3131	0.2843	6.4
H(14)	0.0116	0.4130	0.3670	6.4
H(15)	C.1842	0.0286	0.2673	6.9
H(16)	0.2254	-0.1020	0.3454	6.9
H(17)	0.1256	0.0256	0.4536	4.9
H(18)	0.0223	0.0891	0.3640	4.9

Table III. Postional Parameters and Thermal parameters (\AA^2) for 4

 $\text{B}(\text{eq}) {=} 8 \pi 2/3 \sum i \sum j Uija i^{*}.aj^{*}(\text{ai, aj})$

 $\hat{\mathcal{A}}$

Table IV Anisotropc Displacement Coefficient (\mathring{A}^2) for 4

 $\hat{\mathcal{A}}$

Table V. Intromolecular Bond Distances in 6 (À)

Estimated standard deviation in the least significant figure are given in parentheses

N.	GE	ĸ.	115.8877	N2.	GE	ĸî	2.370(3)
N1	GE	Ni	115.6677.	NΣ	GE	C4	177.610(8)
111	GE	N ₂	77.8(1)	N2	GE	C4	176.952(8)
N ₂	GE	N ₂	78.9(1)	NС	GE	C4	27E.2E0(E)
n:	GΞ	кc	77.6(1)	N2	GE	C4	27E.280(B)
N ₂	GE	C4	102.0(1)	N2	GE	C4	277.610(8)
N1	GE	C÷	103.8(1)	7.2	GE	C4	276.952(8)
N2	GE	C٤	99.8(1)	Сś	GE	C4	4.01(1)
N2	GΞ	K1	115.88 (7)	С÷	GΣ	C4	4. C1 (1)
N1	GE	N ₂	77.6(1)	C4	GΞ.	С÷	4.01(1)
N1	GE	N2	77.6(1)	GE	N1	C ₂	123.3(3)
Ni	GΞ	N ₂	78.9(1)	GΣ	N2	N2	85.315(2)
N1	GE	C4	95.8(1)	GΞ	N2	N2	89.315(2)
N1	GE	С÷	102.0(1)	GΣ	N2	C3	105.1(3)
NI	GE	C÷	103.8(1)	GΣ	1:2	83	103.3(3)
N ₂	GΞ	N ₂	7E.9(1)	GE	N2	C3	104.8(3)
N1	GΞ	N2	77.6(1)	NД	N2	NР	60.OC
N2	GE	хz	77.8(1)	к2	N2	cз	97.5(5)
1:1	GΞ	C4	103.6(1)	N2	N2.	C3.	25.4(4)
N2	GΣ	С÷	99.E (1.	NZ.	N2	CЗ	137.7(5)
N1	GΞ	C4	101.0(1)	к2	N2	cз	153.6(5)
N2	GΣ	N ₂	2.370(3)	N2	N2.	C3.	40.8(5)
жc	GΞ	КC	2.370(3)	NТ	NΣ	cз	BC.2(5)
кz	GΞ	C÷	276.95218	CЗ	11 Z	03	113.3(3)
102	GE	C4	27E.2B0(E)	cз	N2	CЗ	226.0(3)
\mathfrak{u}	GΣ	C4	177.610(8)	CЗ	N2	cз	222.8(2)

Table VI. Intromolecular Bond Angles in 6

Estimated standard deviation in the least significant figure are given in parentheses

atom	22	У	\mathbb{Z}	B (eq)
H(1)	0.2574	0.0639	0.2587	6.2
H(2)	0.2070	0.1824	0.1734	7.7
H(3)	0.1137	0.1491	0.1128	7.7
H(4)	0.0846	0.2262	0.1687	7.7
H(5)	0.2843	-0.0037	0.3598	5.6
H(6)	0.3285	0.1630	0.3596	5.6
H(7)	-0.1237	0.0597	0.4262	16.1
H(8)	C.0432	0.1818	0.4260	16.1
Ge	0	0	0.27494(3)	2.70(2)
N(1)	0.1920(4)	0.0483(5)	0.2926(2)	5.1(2)
N(2)	0.0022	0.0036	0.3852(3)	3.7(1)
C(1)	0.1114(7)	0.1544(6)	0.1571(2)	6.4(2)
C(2)	0.2485(5)	0.0639(5)	0.3547(2)	4.6(2)
C(3)	$-0.036(1)$	0.109(1)	0.4014(3)	13.4(5)
C(4)	0.0018	0.0085	0.1820(3)	3.7(2)

Table VIL Postional parameters and Thermal Parameters (À) for 6

atom	U_{11}	U_{22}	U_{33}	$\rm{U_{12}}$	U_{13}	U_{23}
Ge	0.0293(5)	.0332(6)	.0275(5)	-0.005	0.0025(3)	$-0.000(1)$
N(1)	0.037(4)	0.054(5)	0.029(3)	0.00(1)	$-0.000(3)$	0.004(8)
N(2)	0.15(2)	0.051(8)	0.10(1)	0.02(1)	0.07(1)	0.067(8)
N(3)	0.004(4)	.036(5)	0.034(5)	0.001(4)	$-0.007(4)$	$-0.005(4)$
N(4)	0.025(3)	0.041(4)	0.034(4)	$-0.000(8)$	0.003(3)	$-0.015(6)$
$\mathbf C$	0.029(5)	0.066(8)	0.070(7)	0.01(1)	0.009(5)	$-0.03(1)$
C(1)	0.047(6)	0.17(2)	0.032(5)	0.04(2)	0.013(5)	0.06(1)
C(2)	0.039(6)	0.12(2)	0.038(6)	$-0.002(8)$	0.013(5)	$-0.008(7)$
C(3)	0.05(2)	0.08(1)	0.07(1)	0.00(1)	$-0.001(1)$	$-0.01(1)$
C(4)	0.039(8)	0.08(1)	0.08(1)	$-0.017(8)$	$-0.027(8)$	0.04(1)
C(5)	0.021(1)	0.051(8)	0.15(1)	$-0.022(9)$	0.02(1)	$-0.07(1)$
C(6)	0.022(6)	0.061(9)	0.07(1)	$-0.013(6)$	$-0.004(6)$	$-0.029(7)$

Table VIII. Anisotropic Displacement Coefficient (À) for 6

 $\ddot{}$

 ~ 10

PAPER 3. INTERESTING HYDRIDE AND FLUORIDE TRANSFER REACTIONS DURING NUCLEOPHILIC SUBSTITUTION AT SILICON

ABSTRACT

While 1 (Z = Cl, R = H) and 2 (Z = Cl, R = Me) undergo nucleophilic substitution of Cl by a variety of R ⁻ and \cdot NR₂, 2 is particularly prone to

hydride transfer from these nucleophiles to form 3 ($Z = H$, $R = Me$), particularly when the alkyl groups are large. Interestingly, 2 undergoes nucleophilic substitution under milder conditions than ClSi(NMe₂)₃. The reaction of 1 with LiC₆F₅ gives the expected product 4 (Z = C₆F₅, R = H) but with 2, three products are formed, namely, $5 (Z = C_6F_5, R = Me)$, the fluoride transfer product 8 $(Z = F, R = Me)$ and the tetrafluorobenzyne insertion product of 5 (9) in which expansion of one of the rings of 5 has occurred via the benzyne moiety insertion reaction into an equatorial Si-N bond. The structures of 8 and 9 determined by X-ray crystallography are reported.

COMMUNICATION

In the course of exploring the axial nucleophilic substitution chemistry of azasilatranes 1 and 2 (reactions 1 and 2) we were surprised to encounter

the formation of the hydride substitution product of 2, namely, 3 (reaction 2)

using nucleophilic reagents such as $LiNR_2$ (R = Me, Et, *i*-Pr) and LiR (*n*-Bu, $s-Bu$, $t-Bu$, Ph). By contrast, the same nucleophiles gave exclusively the expected product A (Nuc = NMe₂) or a mixture of A , HNR₂ and a polymeric form of metallated intermediate 5 (Nuc = NEt_2 and $LiN(i-Pr)_2$) when 1 is the substrate. As we also describe herein, the amount of 3 formed in reaction 2 ranges from *ca*. 15-60% depending on the LiNR₂ reagent used. In the case of the LiR reagents, low conversion of 1 to A is observed, with the major product being polymeric $5.$ Only in the case of s -BuLi and t -BuLi were small amounts of 4 seen $(A:4 \approx 5:1)$. With 2, however, 3 is observed to form with all LiR in *ca*. 5-100% conversion, depending on the R group.

Whereas 1 gives only the expected substitution product 6 in reaction 3, 2

remarkably gives rise to the three products 7, 8 (a fluoride transfer product) and 9 in a ratio of approximately 1:2:1, respectively, of which 8 and 9 have been structured by X-ray means. Evidence is presented for the formation of 8 and 9 via a benzyne intermediate.

The reaction of equimolar quantities of 1 with $LiNMe₂$ in Et₂O at room temperature gives exclusively 10. Under the same conditions, 2 gives a

mixture of 11 and 3 in a 5:1 ratio. In the presence of $LiNEt₂$ at room temperature, 1 in THF gave 1 H NMR spectra consistent with the immediate and exclusive formation of HNEtg plus an intractable precipitate presumably arising from a polymeric form of intermediate 5, whereas at -80 °C, NMR evidence for low conversion to 12 was observed. On the other hand, 2 with $LiNEt₂$ gave a 4:1 ratio of 13 and the hydride transfer product 3. Similarly, LiN(i -Pr)₂ with 1 gave only 4 and HN(i -Pr)₂ at room temperature while with 2, 14 and 3 were synthesized in a *ca.* 1:2 ratio. It appears that 1 becomes increasingly prone to deprotonation at the expense of axial substitution as the nucleophile becomes more basic and sterically encumbered in the order $NMe₂$ < $NEt₂$ < $N(i-Pr)₂$. In contrast, 2 becomes increasingly likely to undergo axial hydride transfer with the nucleophile at the expense of normal

nucleophilic substitution. It is reasonable to suppose that hydride transfer is sterically favored by the equatorial methyl groups in 2 as depicted in the postulated intermediate **C,** in which the transannular Si-N bond is probably weakened relative to that in $2³$. In substantiation of such a pathway, ¹H and

¹³C NMR spectra compared favorably with that of the expected imine elimination product $Me₂HCN=CMe₂$ were observed in the reaction of 2 with $\text{LiN}(i-\text{Pr})_2$. Moreover, the addition of the Li⁺ complexing agent Me₂N-CH2CH2NMe2 (TMEDA) greatly inhibited nucleophilic substitution and hydride transfer presumably owing to interference with four- and six-center intermediate formation, respectively.

Interestingly, an acyclic near-analogue of 2, namely, $CISi(NMe₂)₃⁴$ requires more vigorous conditions (80 °C, 2 to 19 h) for substitution or hydride transfer to occur. Thus $LiNMe₂$ and $LiNEt₂$ in NMR tube experiments convert ClSi(NMe₂)₃ almost quantitatively in 2 and 10 h, respectively, at 80 $^{\circ}$ to $(Me_2N)_4Si$ and $Et_2NSi(NMe_2)_3$, while $LiN(i-Pr)_2$ gives rise to a barely detectable amount of $HSi(NMe₂)₃$ over a period of 19 h at 80°. These results are in accord with earlier reports that four-coordinate silicon compounds do not undergo nucleophilic substitution as easily as pentacoordinate species.⁵

n-Butyl lithium reacts with **1** at -90° in 0.5 h to give exclusively the substitution product **15** in low conversion, whereas **2** with n-BuLi gives a *ca.* 20:1 ratio of **16** to the hydride transfer product 3 at 7°. Azasilatrane **1** with s-BuLi and *t*-BuLi is partially converted to 17 and 18, respectively, along with barely detectable ¹H NMR peaks for 4 in 1 h at -75°. However, both of these reagents cause the quantitative conversion of 2 to the hydride transfer product 3 plus a 4:1 ratio of 1- and 2-butenes ($Z: E \approx 3:2$) from the former reagent and iso-butene from the latter.

As in the postulated intermediate C for amide nucleophiles, D is sterically favored for carbanionic nucleophiles. Structure **is also consistent** with the observed formation of a higher proportion of 1-butene compared with 2-butenes, since $R = Et$, $R' = H$ in this structure would be sterically favored over $R = Me$, $R' = Me$. It was also observed that introduction of TMEDA strongly inhibits both alkylation and hydridation of **2.** That a hydrogenated carbon alpha to the lithiated carbon is involved in these reactions was confirmed by reacting **2** with BrMgCHgPh. Here as expected, the exclusive process is substitution giving 18.

When $CISi(NMe₂)₃$ is reacted with *n*-BuLi, *s*-BuLi or *t*-BuLi, a higher temperature is required for reaction (80 °C) as well as longer times (typically ca. 23 h). Interestingly the amounts of $HSi(NMe₂)₃$ formed in these reactions $(0, -40$ and $\sim 70\%$, respectively) is low compared with 2.

The alpha carbon bearing the hydrogen for hydride transfer can also be present in an aromatic ring. Whereas **1** in the presence of LiPh at -50° for 30 min gives 20⁶ in low conversion plus polymeric 4, 2 reacts with LiPh at -45° or at room temperature in 2 h to give *ca.* 90% substitution product **21** and about 5% **3.** Using LiCgFs, **1** produces **6** at -50° in **1** h as the exclusive product while the same reaction with **2** gives a 1:2:1 mixture of **7,** the fluoride transfer product **8** and the novel expanded ring product **9.** As seen in Figures 1 and 2, both 8^7 and 9^8 feature transannular bonds (2.034 (2) and 2.246 (3) Å, respectively) in the solid state. This bond in **9** is longer owing to the presence of the seven-membered ring. That the tetrafluorophenylene group in **9** probably arises from the attack of benzyne (liberated as 8 is formed) on **7,** was shown by the generation of 9 in the reaction of 7 with a mixture of C_6F_5Br and n-BuLi warmed from -50° to room temperature (80% conversion) and by the trapping of tetrafluorobenzyne as the known Diels-Alder adduct 22^9 in this reaction at -50°. It is interesting in this regard that 21 does not form a product analogous to **9** under the same reaction conditions.

Figure 1. ORTEP drawing of 8. Ellipoids are at the 50% level.

Figure 2 . ORTEP drawing of 9. Ellipoids are at the 50% level.

ACKNOWLEDGMENTS.

The authors are grateful to the Donors of the Petroleum Research Fund administered by the American Chemical Society, and the National Science Foundation for grant support of this work. We also thank Dr. V. Young, Jr. of the Iowa State Molecular Structure Laboratory for solving the crystal structures.

REFERENCES

- (1) Gudat, D.; Verkade, J. G. *Organometallics,* **1989,** *8,* 2772.
- (2) Wan, Y.; Verkade, J. G., ms in preparation.
- (3) Gudat, D.; Verkade, J. G. *J. Am. Chem. Soc.* **1989,***111,* 8520.
- (4) a) Breederveld, H.; Waterman, H. I. *Research* **1952,** 5, 537. b) Burger, H.; Sawodny, W. *Inorg. Nucl. Chem. Letters* **1966,** *2,* 209.
- (5) a) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. *Chem. Rev.,* **1993,** *93,* 1371 and references therein, b) Deiters, J. A.; Holmes, R. R. *J. Am. Chem. Soc.* **1990,***112,* 7197. c) Gordon, M. S.; Carrol, M. T.; Davis, L. P.; Burggraf, L. W. *J. Phys. Chem.* **1990,***94,* 8125.
- (6) a) Macharashvili, A. A.; Shklover, V. E.; Struchkov, Y. T. *J. Organomet. Chem.,* **1988**,349, 23. b) Lukevics, E.; Zelcan, G. L; Solomennikova, I. I.; Liepinsh, E. E.; Yankovska, I. S.; Mazheika, I. B. *J. Gen. Chem. USSR (Engl. Transi.)* **1977,** *47,* 98.
- (7) Crystal data for 8: monoclinic, space group $P2_{1/m}$, $a = 7.352$ (1), $b =$ 12.361 (2), and $c = 7.512$ (1) Å, b = 119.30 (1)°, V = 595.3 (2) Å³, Z = 2, D_c = 1.716 g/cm³; 1659 reflections measured, 805 observed $(I \ge 2 s (1))$; R = 0.0348, $R_w = 0.0926$. The structure was solved by direct methods.
- (8) Crystal data for 9: Triclinic, space group $\overline{P1}$, $a = 8.586$ (2), $b = 10.215$ (2), and $c = 13.745$ (3) Å, a = 95.62 (2), b = 102.25 (2), g = 107.74 (2)°, V = 1104.8 (4) Å³, Z = 2, D_c = 1.589 g/cm³; 3210 reflections measured, 2679 observed $(F \ge 4.0 \text{ s (F)}); R = 0.0321, R_w = 0.0466$. The structure was solved by direct methods.

a) Hoffman, R. W. *Dehydrobenzene and Cycloalkyne,* Academic Press: New York, 1967. b) Hankinson, B.; Heaney, H.; Sharma, R. P. *J. Chem. Soc., Perkin* **/, 1972,** 2372. c) Oilman, H.; Gozsich, R. D. *J. Am. Chem. Soc.,* **1957,** *79,* 2625.

SUPPLEMENTARY MATERIAL 1 PREPARATIONS OF 2,6-19,21

Compound 2. Chlorosuccinimide (2.47 g, 19.2 mmol) dissolved in 50 mL of **CH2CI2** was slowly added to a solution of 3 (4.03 g, 18.8 mmol) in 25 mL of CH₂Cl₂ at -50 °C. The solution was allowed to warm to -10 °C and stirred for 20 min. All the volatiles were removed under vacuum while the solution was kept at -10 °C. The solid was extracted with 4×30 mL portions of toluene. Evaporation of the toluene under vacuum afforded 2.62 g of white crystalline product, contaminated by a trace amount of by-product succinimide, which was removed by sublimation at 46 °C/15 x 10⁻³ mmHg for ~ 72 h. The solid was once again extracted with toluene and 2.34 g of pure crystalline 2 was obtained in 52% yield by removing the solvent under vacuum. ¹H NMR (C_6D_6) 3.08 (s, 9 H, NCH₃), 2.61 (t, 6 H, 3 J_{HCCH} = 6.0 Hz, CH₃NCH₂CH₂), 2.01 (t, 6 H, $CH_3NCH_2CH_2$; ¹H NMR (CDCl₃), 2.96 (t, 6 H, ³J_{HCCH} = 6.0 Hz, CH₃NCH₂CH₂), 2.77 (t, 6 H, CH₃NCH₂CH₂), 2.75 (s, 9 H, NCH₃); ¹³C NMR (CeDe) 47.68 **(CH3NCH2CH2),** 46.77 **(CH3NCH2CH2),** 39.25 **(CH3);** 29Si NMR (C_6D_6) -87.22. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 248.1 (31.2, M+), 213.2 (100, M+ - CI), 204.1 (59.2, M+ - NMe2). HRMS for M+ (C9H2iSiN4Cl) calcd: 248.12240, found: 248.12229.

Compound 6. C_6F_5Br (0.13 g, 0.52 mmol) was dissolved in 18 mL of pentane and the solution was cooled to -50 °C. n -BuLi (0.26 mL, 0.52 mmol) in hexane was added and the mixture was stirred for 30 min. A precooled (-50 °C) toluene solution (15 mL) containig 0.084 g (0.41 mmol) of **1** was added dropwise. After stirring at -50 °C for 1 h, the mixture was allowed to warm slowly to room temperature and then filtered. Removal of the solvents under vacuum followed by sublimation afforded 0.076 g of crystalline product in 43% yield (0.22 mmol). M.p. 102-104°. ¹H NMR (C₆D₆) 2.66 (t, 6 H, ³J_{HCCH} = 5.9 Hz, SiNCH₂CH₂), 2.01 (t, 6 H, SiHNCH₂CH₂), 0.91 (b, 3 H, NH); ¹³C NMR (CeDe) 50.76 **(HNCH2CH2N),** 36.79 **(HNCH2CH2);** 29Si NMR (CeDe) -84.51; 19F NMR (C_6D_6) -125.71 (dd, 2 F, o-F, ${}^3J_{FF} = 27.4$ Hz, ${}^4J_{FF} = 9.0$ Hz)-157.3 (t, 1 F, p-F, 3 JFF = 21.45 Hz), -162.26 (m, 2 F, m-F). MS (70 ev, EI) m/z (relative intensity, proposed ion) 338.1 (3.4, M⁺), 171.1 (3.5, M⁺ $-C_6F_5$), 240.0 (33.2), 225.0 (17.3), 200.0 (16.6), 168.0 (83.3).

Compound 7. To 0.64 g (2.6 mmol) of compound **2** in 25 mL of toluene was added 2.8 mmol of $MgBrC_6F_5$ as a mixture prepared by mixing 0.70 g of C_6BrF_5 with 0.70 g of Mg in 10 mL of ether at room temperature. The reaction mixture was stirred for 1/2 h. After filtration, all the volatiles were removed under vacuum over a period of 5 h. By sublimation at $50^{\circ}/5 \times 10^{-3}$ mmHg, 0.14 g of a crystalline solid, identified as pure product **7** was obtained in 14% yield. M.p., 105-106 °C. ¹H NMR (C₆D₆) 2.53 (t, 6 H, ³J_{HCCH} = 5.9 Hz, $CH_3NCH_2CH_2$), 2.36 (s, 9 H, NMe), 1.96 (t, 6 H, $CH_3NCH_2CH_2$); ¹³C NMR **(CeDe)** 50.18 **(CH3NCH2CH2),** 48.47 **(CH3NCH2CH2),** 38.20 **(CH3N);** 29Si NMR (C_6D_6) (temperature) -69.94 (50 °C), -70.94 (20 °C), -71.76 (10 °C); ¹⁹F NMR (C_6D_6) -126.46 (dd, 2 F, o-F, ${}^3J_{FF} = 24.55$ Hz, ${}^4J_{FF} = 9.3$ Hz), -156.32 (t, 1 F, p-F, ${}^{3}J_{FF} = 19.75$ Hz), -162.96 (m, 2 F, m-F). LRMS (70 ev, EI) m/z (relative intensity, proposed ion), 380.0 (100.0, M⁺), 336.0 (56.0, M⁺ - CH₆N), 324.2 (25.3), 295.3 (18.8), 281.3 (12.1), 213 (8.3, M⁺ - C₆F₅); HRMS for M⁺ (C₁₅H₂₁N₄F₅Si): calcd, 380.14557, found, 380.14740.

Compounds 8 and 9: To 25 mL of a pentane solution of $C_6F_5Br(0.433 g,$ 1.79 mmol) at -50 °C was added 0.9 mL of a 2.01 M (1.89 mmol) hexane solution of *n*-BuLi. After stirring at -50 °C for 3 h, 0.42 g (1.7 mmol) of 2 in 8 mL of toluene was slowly added. The mixture was stirred at \sim -50 °C for an additional 0.5 h and then allowed to warm to room temperature. The mixture turned brownish red upon warming up. After filtration and washing with 3×15 mL portions of toluene a ¹H NMR spectrum of the filtrate revealed three major products **7, 8** and **9** in a ratio of approximately 1:2:1. After removal of the solvent under vacuum, 8 sublimed first at 35 \degree C/15 x 10⁻³ mmHg with about 90% purity. Repeated sublimation gave 0.12 g of pure 8 in 28% yield. M.p., 120-122 °C. The residual mixture was then sublimed at 55 °C to remove **7** together with unseparated **8** and a small amount of **9.** After removal of **7** and **8** was complete (as shown by the NMR spectra of the sublimed solid) 0.189 g (21% yield) of **9** was readily sublimed at $110^{\circ}/15$ x 10^{-3} mmHg as a white crystalline solid. M.p., 168-169 °C. Compound **9** dissolved well in THF, toluene but did not dissolve in water. Crystals of **8** and **9** suitable for X-ray studies were grown by sublimation at 60 °C in an unevacuated tube sealed under nitrogen and at 5×10^{-2} mmHg, respectively.

Characterization for 8: ¹H NMR (C₆D₆) 2.97 (s, 9 H, NMe), 2.60 (dt, 6 H, $CH_3NCH_2CH_2$, $^3J_{HCCH}$ = 6.0 Hz, $^4J_{FSiCH}$ = 1.2 Hz), 2.03 (t, 6 H, $CH_3NCH_2CH_2$); ¹³C NMR (C₆D₆) 48.32 (s, MeNCH₂CH₂), 47.05 (d, $\text{MeNCH}_2\text{CH}_2\text{N}$, ${}^3\text{J}_{\text{CF}}$ = 1.5 Hz), 37.28 (d, ${}^3\text{J}_{\text{CF}}$ = 8.0 Hz, CH₃N); ¹⁹F NMR (C_6D_6) -136.19; ²⁹Si NMR (C_6D_6) -99.69 (d, ¹J_{FSi} = 191.76 Hz). LRMS (70 ev, EI) m/z = (relative intensity, proposed ion) 232.2 (100, M⁺), 188.1 (86.1, M⁺ - $CH_3NCH_2CH_2$); HRMS for M⁺ (C₉H₂₁FN₄Si). Calcd: 232.15195, found: 232.15201. Anal. calcd for $C_9H_{21}FN_4Si$: C, 46.55, H, 9.05, N, 24.14; found: C, 46.74; H, 9.17; N, 24.37.

Characterization for $9:$ ¹H NMR (toluene-D₈) 2.60 (d, 3 H, $CH_2NCH_3C_6F_4Si$, ${}^5J_{FCH} = 1.05 Hz$), 2.56 (b, 3 H, NCH₂CH₂NCH₃Si), 2.14 (s, 3) H, NCH₂CH₂NCH₃Si), 2.78 (m, 1 H), 2.60 (m, 1 H), 2.59 (m, 1 H), 2.57 (m, 1 H), 2.44 (m, 1 H), 2.10 (m, IH), 2.08 (m, 1 H), 1.79 (m, H), 1.73 (m, 2 H), 1.70 (m, 1 H), 1.51 (dt, 1 H); ¹³C NMR (C₆D₆) 57.58, 55.87, 51.87, 51.32, 48.46, 48.33, 42.36 (d, **3**J**fc** = 7.54 Hz), **39.26** (m), 38.52; 29Si NMR (CeDe, 20 *°C)* -70.30; 29gi NMR (solid state) -62.6. ¹⁹F NMR (282.186 Hz, toluene-D₈, 20 °C) -126.35 (b, 1 F), -128.38 (b, 1 F), -129.83 (dd, 1 F, 3 JFF = 27.7Hz, 4 JFF = 12.4 Hz), -146.01 (t, 1 F, 3 J_{FF} = 15.2 Hz), -154.63 (t, 1 F, 3 J_{FF} = 21.2 Hz), -155.18 (t, 1 F, 3 J_{FF} = 18.3 Hz), -158.48 (t, 1 F, 3**Jff** = 24.6 Hz), -161.98 (b, 2 F); LRMS (70 ev, EI) *m/z* (relative intensity, proposed ion) 528.1 (34.1, M⁺), 484.1 (95.1, M⁺ - C₂H₆N), 292 (45), 361.1 (152, M+ - CeFs), 206.1 (100.0), 144.2 (89.2), 99.1 (85.2), 69.0 (40); HRMS for M^+ (C₂₁H₂₁F₉N₄Si) calcd: 428.13918, found: 528.14039. Anal for $C_{21}H_{21}F_9N_4Si$, calcd: C, 47.73; H, 3.98; N, 10.60; found: C, 48.19; H, 3.87; N, 10.87.

Compound 10. Compound **1** (0,25 g, 1.2 mmol) was mixed with 0.07 g (1.3 mmol) of LiNMe₂ in a dry box and then 25 mL of diethyl ether was added.

The suspension was stirred at room temperature for 48 h. After filtration, the ether was removed under vacuum and then the solid residue was extracted with 3 x 10 mL portions of benzene. Evaporation of the benzene resulted in a crystalline product which was purified by sublimation at 75 °C and 6 x 10⁻³ mmHg (0.155 g, 60% yield). M.p. 74-75°. ¹H NMR (C₆D₆) 2.75 (s, 6 H, NMe₂), 2.74 (dt, 6 H, $HNCH_2CH_2$, ${}^3J_{HNCH} = 3.0$, ${}^3J_{HCCH} = 5.7$ Hz), 2.08 (t, 6 H, **HNCH2CH2N),** 0.76 (b, 3 H, NH); IH NMR **(CDCI3)** 2.93 (dt, 6 H, $HNCH_2CH_2$, ${}^{3}J_{HNCH} = 2.7$ Hz, $J_{HCCH} = 5.7$ Hz), 2.57 (t, 6 H, $HNCH_2CH_2$), 2.35 s, 6 H, **NMe2),** 0.81 (s, 3 H, NH); 13C NMR (CeDe) 50.57 **(HNCH2CH2N),** 37.67 **(HNCH2CH2N)** 41.00 **(NMe2);** 13C NMR **(CDCI3):** 50.53 **(HNCH2CH2),** 37.13 **(HNCH2CH2N),** 40.51 **(NMe2);** 29Si NMR (CeDe) -72.58; 29Si NMR **(CDCI3)** -75.26. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 215.2 (13.5, M⁺), 171.1 (100, M+ - **NMe2),** 128.1 (3.4, M+ - NMe2 - **NH2CH2CH2);** HRMS for M+ $(C_8H_{21}N_5Si)$ calcd: 215.15662, found: 215.15664. Anal, for $C_8H_{21}N_5Si$: calcd: C, 44.61; H, 9.83; N, 32.52. Found: C, 44.76; H, 10.19; N, 32.59.

Compound 11. To a mixture of 1.02 g (4.11 mmol) of **2** and 0.23 g (4.4 mmol) of $LiNMe₂$ was added 50 mL of diethyl ether. The solution was stirred at room temperature for 72 h. After removal of ether under vacuum, the residue was extracted with 3×15 mL portions of benzene. A ¹H NMR spectrum of the solution revealed the formation of **11** and 3 in a ratio of approximately 5:1. A crystalline mixture (0.87 g) was obtained after evaporating the volatiles. Separation was achieved by subliming the lighter 3 at 30 °C for 2 d, followed by subliming **11** at 60 °C or above. Repeated slow sublimation afforded 0.43 g of pure 11 in 41% yield. ¹H NMR (C_6D_6) 2.82 (s, 6 H, NMe₂), 2.64 (s, 9 H, NCH₃), 2.61 (t, 6 H, Si(CH₃)NCH₂CH₂, ³J_{HCCH} = 5.7 Hz), 2.21 (t, 6 H, Si(CH₃)NCH₂CH₂); ¹³C NMR (C₆D₆) 51.16 (SiNCH₂CH₂), 50.99 (SiNCH₂CH₂), 40.22 (N(CH₃)₂), 37.71 (SiNCH₃); ²⁹Si NMR (C₆D₆) -51.39. LRMS (70 ev, El) *mlz* (relative intensity, proposed ion) 257.2 (2.4, M+), 213.2 (100.0, M+ - **NMe2),** 199.1 (1.7), 170.1 (4.9), 156.1 (12.8), 129.1 (4.5), 113.1 (11.3); HRMS for M^+ (C₁₁H₂₇N₅Si) calcd: 257.20358, Found: 257.20387.

Compound 12.

Method A: A solution of **1** (8 mg, 0.04 mmol) in 0.5 mL of THF-Dg was prepared. ¹H NMR data for 1 (THF-D₈) 2.99 (t, 6 H, 3 J_{HCCH} = 5.85 Hz, $HNCH_2CH_2$), 2.75 (t, 6 H, $HNCH_2CH_2$), 1.29 (b, 3 H, NH); ¹³C NMR data for 1 (THF-Dg), 52.08 **(HNCH2CH2),** 37.95 **(HNCH2CH2). LiNEt2** (3 mg, 0.04 mmol) was dissolved separately in 0.4 mL of THF-D₈. ¹H NMR data for LiNEt₂ (THF-D₈), 2.83 (q, 4 H, ³J_{HCCH} = 7.2 Hz, CH₂), 1.04 (t, 6 H, CH₃); ¹³C NMR data for **LiNEt2** (THF-Dg), 50.36 (br, **CH2),** 18.56 **(CH3).** The iH, l^C NMR spectra of the combined THF-Dg solutions revealed the instant and almost quantitative formation of HEt_2N . ¹H NMR of $HNEt_2$ (THF-D₈), 2.55 (q, 4 H, CH₂), 1.02 (t, 6 H, **CH3,** 3**J**hcch= 7.2 Hz); 13c NMR: 44.80 **(CH2),** 15.82 **(CH3).**

Method B: To a solution of 0.10 g (0.5 mmol) of 1 in 25 mL of THF at \sim -80 °C was very slowly added 20 mL of a THF solution of 50 mg (0.60 mmol) of LiNEt₂ until all the starting material was consumed as monitored by ${}^{1}H$ NMR spectroscopy. The mixture was stirred at -80 °C for 1 h. Removal of THF under vacuum followed by extraction of the residue with 4×5 mL portions of benzene gave a yellowish solution. Evaporation of the solvent

under vacuum afforded the crude product **12** as a semi-solid (0.045 *g,* 19% yield). ¹H NMR (C₆D₆) 3.07 (q, 4 H, NCH₂CH₃, ³J_{HCCH} = 6.9 Hz), 2.77 (t, 6 H, $HNCH_2CH_2$, ${}^{3}J_{HCCH}$ = 6.0 Hz), 2.12 (t, 6 H, $HNCH_2CH_2$), 1.18 (t, 6 H, NCH_2CH_3 , ${}^{3}J_{HCCH}$ = 6.9 Hz); ¹H NMR **(CDCl₃)** 2.96 (t, 6 H, $HNCH_2CH_2$, 3 J_{HCCH} = 6.0 Hz), 2.75 (q, 4 H, $NCH_{2}CH_{3}$, 3 J_{HCCH} = 6.9 Hz), 2.59 (t, 6 H, *HNCH2CH2),* 0.93 (t, 6 H, **NCH2CH3); 13C** NMR **(CDCI3)** 50.37 **(HNCH2CH2N),** 41.75 **(NCH2CH3),** 37.09 **(HNCH2CH2),** 16.55 **(NCH2CH3).** MS (70 ev, EI) *m/z* (relative intensity, proposed ion) 243.4 (4.7 M⁺), 171.1 (100, M⁺ - NEt₂), 200.2 $(3.3, M^+ - HNCH_2CH_2).$

Compound 13. Compound **2** (0.42 g, 1.7 mmol) was mixed with 0.15 g (1.8 mmol) of LiNEt₂ in 45 mL of benzene. The solution was heated at 65 °C for 24 h. A ¹H NMR spectrum of the solution showed the absence of the starting material and the formation of compounds **13** and **3** in a ratio of about 4:1. After filtration and removal of the solvent under vacuum, 0.34 g of crystalline solid was obtained. Repeated sublimations at 30 $\rm{^{\circ}C}$ for 1 day to remove the lighter **3** followed by further sublimation at 70 °C afforded 0.12 g of pure **13** (25%). ¹H NMR (C₆D₆) 3.14 (q, 4 H, NCH₂CH₃, ³J_{HCCH} = 7.8 Hz), 2.56 (s, 9 H, CH₃), 2.54 (t, 6 H, CH₃NC H_2 CH₂, ³J_{HCCH} = 5.7 Hz), 2.40 (t, 6 H, $CH_3NCH_2CH_2$), 1.17 (t, 6 H, NCH₂CH₃); ¹³C (C₆D₆) 52.13 (MeNCH₂CH₂), 51.08 (MeNCH2CH2), 40.05 **(NCH2CH3),** 36.28 **(NCH3),** 15.23 **(NCH2CH3);** 29Si NMR (C_6D_6) -37.92.

Compound 14. Compound 2 (24 mg, 0.10 mmol) was mixed with 12 mg (0.11 mmol) of LiN $(i\text{-}Pr)_2$ in an NMR tube and 0.5 mL of C_6D_6 was added after

the tube was cooled in ice water. The tube was then sealed and allowed to warm slowly to room temperature. ¹H and ¹³C NMR spectra showed that **14** and **3** formed in a ratio of about 1:2, ¹H NMR (C_6D_6) for **14:** 2.47 (s, br, 9 H, NCH₃) 2.40 (s, br, 6 H, CH₃NCH₂CH₂), 2.24 (s, br, 6 H, CH₃NCH₂CH₂), 1.04 (d, 12 H, **(CH3)2CN);** 13C NMR (CeDe) 51.13 **(CH3NCH2CH2),** 50.45 **(CH3NCH2CH2),** 35.68 **(CH3NCH2CH2),** 34.38 (NCH(CH3)2), 14.52 $(NCH₃)₂$).

Compound 15. To 0.205 g (0.993 mmol) of **1** in 50 mL of toluene was added dropwise 10 mL of a 0.201 M n-BuLi solution (2.01 mmol) in toluene at -90 °C. The solution was allowed to warm to room temperature and stirred for 1/2 h. The solvent was evaporated under vacuum and the residue was extracted with 3 X 20 mL portions of pentane. Removal of pentane under vacuum and sublimation of the solid residue at 56 °C/11 x 10-3 mmHg gave 0.032 g of **15** in 14% yield. ¹H NMR (C₆D₆) 2.74 (dt, 6 H, HNCH₂CH₂N, ³J_{HNCH} = 2.7 Hz, 3 J_{HCCH} = 5.85 Hz), 2.15 (t, 6 H, HNCH₂CH₂), 1.49 (b, 6 H \cdot CH₂CH₂CH₂), 1.02 (t, 3 H, **CH3);** 13C (CeDe) 50.54 **(HNCH2CH2N),** 37.15 **(HNCH2CH2),** 29.59, 28.06, 20.74,14.47 **(CH2CH2CH2CH3);** 29Si NMR **(CeDe)** -65.34. LRMS (70 ev, EI) *miz* (relative intensity, proposed ion) 228.1 (0.43, M+), 171,1 (100.0, M+ - n-Bu), 57.0 $(16.11, \text{Bu}^+), 149 (22.5), 116.1 (87.2); HRMS for M^+ - Bu (C_6H_{15}N_4Si)$ Calcd: 171.10660, found: 171.10661.

Compound 16. To 0.5 mL of a C_6D_6 solution of 20 mg (0.080 mmol) of 2 cooled to 7 °C was added 1.04 mL of 2.01 M n-BuLi solution in hexane (0.080 mmol). The ¹H NMR spectrum taken after 10 min revealed that the reaction was complete and that ~ *5%* fo **3,** ~ 95% of **16** and ~ 5% of 1-butene had formed. The IH NMR chemical shifts of 1-butene compared favorably with those from commercially available 1-butene.

Characterization of 16: ¹H NMR (C_6D_6) 2.61 (s, 9 H, NCH₃), 2.57 (t, 6 H, $CH_3NCH_2CH_2$, ${}^3J_{HCCH}$ = 5.7 Hz), 2.27 (t, 6 H, $CH_3NCH_2CH_2$), 1.6 (m, 6 H, $CH_2CH_2CH_2$), 0.97 (t, 3 H, ³J_{HCCH} = 2.6 Hz); ¹³C (C₆D₆) 50.43 (CH₃NCH₂CH₂), 49.28 **(CH3NCH2CH2),** 39.08 **(NCH3),** 28.24, 27.92, 16.95, 14.40 (- **CH2CH2CH2CH3);** 29Si NMR (CgDg) -40.85. LRMS (70 ev, EI) *m/z* (relative intensity, proposed ion) 270.2 (0.5, M+), 213.2 (100.0, M+ - *n-Bu),* 156.1 (20.1); HRMS for M^+ - n-Bu (C₉H₂₁N₄Si) calcd: 213.15350, found: 213.15378.

Compound 17: To 25 mL of a toluene solution of 0.12 g (0.58 mmol) of **1** at -75° was slowly added 3.5 mL of 0.2 M solution of sec-BuLi (0.7 mmol, 20% excess). The solution was stirred for 15 min and a 1 H NMR spectrum of an aliquot showed low conversion of **1** into **17** and **4,** as well as a substantial amount of **1.** The ratio of **17:4:1** was estimated to be about 5:1:5 according to iH NMR integration. Addition of another 3.5 mL of the sec-BuLi (0.7 mmol) caused the starting material to disappear but it also destroyed a considerable portion of the products. Removal of toluene under vacuum and extraction with pentane (3 x 15 mL portions) followed by evaporating the volatiles gave a semisolid residue containing a small amount of substitution product **17** (yield $<$ 10%). ¹H NMR (C₆D₆) 2.76 (t, 6 H, ³J_{HCCH} = 5.9 Hz, HNCH₂CH₂), 2.07 (t, 6 H, HNCH₂CH₂); ¹³C NMR (C_6D_6) 50.56 $(HNCH_2CH_2)$, 37.27 $(HNCH_2CH_2)$, 27.51, 24.18,14.31,14.21 (s-butyl).

Compound 18. Following the procedure for **17,** it was found that **18** and **4** formed in a ratio of approximately 5:1 during the reaction. Addition of excess of t -BuLi in order to consume all the starting material, also led to a low conversion to product. A small amount of compound **18** was identified by NMR in the reaction residue after removing the volatiles. ¹H NMR (C_6D_6) 2.76 (dt, ${}^{3}J_{HCNH} = 2.7$ Hz, ${}^{3}J_{HCCH} = 5.9$ Hz, $HNCH_2CH_2$), 2.09 (t, 6 H, HNCH2%), 1.02 (s, 9 H, (CH3)3C); 13C NMR (CeDe) 50.57 **(HNCH2CH2), 37.65 (HNCH2CH2),** 24.20 (C**(CH3)3),** 10.72 (C(CH3**)3).**

Compound 19. Compound **2** (0.20 g, 0.82 mmol) was mixed with 0.14 g (0.90 mmol) of $MgBrCH_2C_6H_5$ in 20 mL of toluene and the mixture was refluxed for 0.5 h. After filtration and removal of the solvent, 0.21 g of liquid **19** was collected in 84% yield. ¹H NMR (C₆D₆) 7.45 (d, 2 H, ²J_{HH} = 7.2 Hz, *m*-H), 7.23 (t, 2 H, 2 J_{HH} = 7.8 Hz, o-H), 7.09 (t, 1 H, p-H), 2.51 (t, 6 H, 3 J_{HCCH} = 5.4 Hz, **CH3NCH2CH2),** 2.46 (s, 9 H, **NCH3),** 2.28 (t, 6 H, **CH3NCH2C//2),** 2.14 (s, 2 H, $CH_2C_6H_5$; ¹³C NMR (C₆D₆) 143.06, 130.17, 128.15, 123.95 (C₆H₅), 50.73 **(CH3NCH2CH2N),** 49.72 **(CH3NCH2CH2N),** 36.63 **(NCH3),** 24.47 (PhCH2); 29Si $NMR (C_6D_6) -37.7.$

Compound 21.

Method A: To 0.23 g (0.93 mmol) of **2** in 5 mL of toluene was added 0.70 mL of 1.5 M (1.1 mmol) of an ether/cyclohexane solution of PhLi and the solution was refluxed for 0.5 h. After filtration followed by removal of the solvent under vacuum, 0.26 g (0.90 mmol) of crystalline **21** was sublimed. M.p. 60-62 °C. ¹H NMR (C₆D₆) 8.06 (dd, 2 H, o-H, ³J_{HH} = 7.8 Hz, ⁵J_{HH} = 1.2

Hz), 7.38 (t, 2 H, m-H), 7.27 (t, 1 H, p-H), 2.64 (t, 6 H, NCH₂CH₂, ³J_{HCCH} = 5.7 Hz), 2.54 (s, 9 H, NCH₃), 2.26 (t, 6 H, NCH₂CH₂); ¹³C NMR (C₆D₆) 136.60, 129.00, 127.81, 127.44 (C₆H₅), 50.51 (CH₃NCH₂CH₂N), 50.45, (CH₃NCH₂CH₂), 38.08 **(CH3N);** 2981 (CgDe) -44.41. LRMS (70 ev, El) *mlz* (relative intensity, proposed ion) 290.2 (30.1, M+), 213.2 (100.0, M+ - Ph), 246 (37.1), 234.1 (50.2), 191 (33.8); HRMS for M^+ (C₁₅H₂₆N₄Si) calcd: 290.19268; found: 290.191868. Anal, calcd for $C_{15}H_{26}N_4Si$: C, 62.21; H, 8.97; N, 19.31; found: C, 61.99, H, 9.20, N, 19.38.

Method B: To 0.5 mL of a C_6D_6 solution of 20 mg (0.08 mmol) of 2 was slowly added 0.06 mL of a 1.5 M PhLi solution (0.09 mmol) in ether/cyclohexane at 10 °C. ¹H and ¹³C NMR spectra of the solution showed the formation of 21 and 3 in a molar ratio of approximately 90:5 plus a small amount of biphenyl, whose ¹H and ¹³C NMR peaks compared favorably with a commercially available sample. Its identity was further verified by LRMS *{m/z:* 154).

SUPPLEMENTAL MATERIAL 2 X-RAY DATA FOR l-FLUORO.N^,N".TRIMETHYLAZASILATRANE, 8

A colorless crystal of the title compound was attached to a glass fiber for a data collection at -50 \pm 1 °C on the P4RA diffractometer. The cell constants for data collection were determined from a list of reflections found by a rotation photograph. Pertinent data collection and reduction information is given in Table I. Atomic coordinates and equivalent isotropic displacement parameters are listed in Table II. Bond distances and angles are listed in Tables III and IV , respectively.

Lorentz and polarization correction were applied. A correction based on a nonlinear decay in the standard reflections was applied to the data. A semiempirical absorption correction¹ was applied by using a set of azimuthal scans.

The centric space group $P2₁/m$ was determined by intensity statistics and systematic absences, the structure was solved by direct methods.¹ All nonhydrogen atoms were placed directly from the E-map. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atom positions were generated with ideal geometries and were refined as riding, isotropic atoms.

The structure is found as a C_3 molecule that is disordered across a crystallographic mirror. The $P2₁/m$, space group requires that the contents of the asymmetric unit have mirror symmetry with another, therefore both leftand right-handed ' twists' of the molecule are found on the same site. The only non-hydrogen atoms that are affected are CI and C3. All other atoms are sufficiently modeled with one atom. CI is refined as a half-atom: the other half is produced by symmetry. C3 and its disordered component, C3' are refined as half atoms on general sites. The necessity for splitting these sites also requires dual, riding-atom assignments for the hydrogens on C4.

The Si-F bond distance is $1.643(2)$ Å. The Si-N1 introatomic length is 2.034(2) Å. The N-Si-N angle average to 119.8° . The molecular drawings showing the disordering of the carbons adjacent to the axial nitrogen are illustrated in Figure 1.

X-ray data collection and structure solution were carried out at the Iowa State Molecular Structure Laboratory. Refinement calculations were performed on a Digital Equipment Corp. VAXStation 3100 computer using the SHELXTL-Plus 1 and SHELXL-93 programs. 2

References

1. SHELXTL-plus, Siemens Analytical X-ray Instruments, Inc. Madison, Wi. 2. SHELXL-93, *J. Appl. Cryst.* 1993, in preparation.

Figure 1. Molecular Structure of $FSi(CH_3NCH_2CH_2)_3N$ 8 (a) Showing the **disordering of the carbons attached to the axial nitrogen.**

Figure 1. Continued (b) showing the twist of the NCH_2CH_2N bridges around the C_3 axis after selection of one of the disordered carbons on each bridge.

Figure 2. Unit Cell Drawing for the Structure of 8

Table I. Crystallographic Data fo 8

 \mathcal{L}

Table I. Continued.

Temperature(K)	223(2)
Monochromator	graphite
θ Range	6.76 to 56.80°
Scan Type	$\omega-2\theta$
Standard Reflections	3 measured every 97 reflections
Index Ranges	$-7 \le h \le 7, -13 \le k \le 0$ $-8 \leq l \leq 8$
Reflections Collected	1659
Independent Reflections	841 (Rint = 0.0340)
Observed Reflections	805 (I $\geq 2\sigma(I)$)
Refinement Method	Full-matrix least-squares on F ²
Extinction Correction	0.0124(14)
Hydrogen Atoms	Riding model fixed isotropic U
Parameters Refined	102
Final R Indices $[1 \geq 2\sigma(I)]$	$R1 = 0.0348$, wR = 0.0926
R Indices (all data)	$R1 = 0.0361$, w $R = 0.0935$
GooF, Observed and All Data	1.130, 1.113
Largest and Mean Δ/σ	0.001, 0.000
Largest Difference Peak	$0.225e/\AA^{-3}$
Largest Difference Hole	$-0.220e/\text{\AA}^{-3}$

<u> 1980 - Jan Barnett, martin amerikan ba</u>

 $\bar{\mathcal{A}}$

Atom	\pmb{x}	y	z	U(eq)	
Si	5200(1)	2500	739(1)	23(1)	
F	2696(2)	2500	$-929(2)$	36(1)	
N(1)	8302(4)	2500	2788(3)	28(1)	
N(2)	6026(4)	2500	$-1060(3)$	34(1)	
N(3)	5167(3)	1297(2)	1896(3)	42(1)	
C(1)	9378(6)	2014(4)	1773(6)	33(1)	
C(2)	8219(5)	2500	$-446(4)$	43(1)	
C(3)	8556(7)	1885(4)	4568(6)	41(1)	
C(3')	8911(7)	1335(4)	3312(7)	41(1)	
C(4)	7078(4)	862(2)	3544(4)	57(1)	
C(5)	4734(5)	2500	$-3242(4)$	42(1)	
C(6)	3426(4)	599(2)	1371(4)	48(1)	

Table II. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Coefficients (A^2x10^3) for 8

Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{\rm ii}$ tensor

Table III. Bond Distances (Â) for 8

$Si-F$	1.643(2)	$C(1)-C(1)$ #1	1.200(9)
$Si-N(3)$ #1	1.728(2)	$C(1)-C(2)$	1.573(5)
$Si-N(3)$	1.728(2)	$C(1)-C(3')$	1.596(6)
$Si-N(2)$	1.732(2)	$C(2)-C(1)$ #1	1.573(5)
$Si-N(1)$	2.034(2)	$C(3)-C(3')$	1.290(7)
$N(1)-C(3)$ #1	1.469(5)	$C(3)-C(3)*1$	1.520(10)
$N(1)-C(3)$	1.469(5)	$C(3)-C(4)$	1.598(6)
$N(1) - C(1)$ '	1.468(4)	$C(3') - C(4)$	1.555(5)
$N(1)-C(1)$	1.468(4)		
$N(1)-C(3')$ #1	1.502(5)		
$N(1)-C(3')$	1.502(5)		
$N(2)-C(5)$	1.437(4)		
$N(2)-C(2)$	1.444(4)		
$N(3)-C(6)$	1.430(3)		
$N(3)-C(4)$	1.447(3)		

® Symmetry transformations used to generate equivalent atoms: #1 x, -y+i/2,z

 $\hat{\mathcal{A}}$

Table W. Bond Angles in degrees for 8

 \sim \sim

Table N. Continued

$N(2)-C(2)-C(1)$ #1	106.2(2)	$C(3)-N(1)-C(1)$	113.6(3)
$N(2)-C(2)-C(1)$	106.2(2)	$C(1)$ #1-N(1)-C(1)	48.3(4)
$C(1)$ #1- $C(2)$ - $C(1)$	44.8(3)	$C(3)*1-N(1)-C(3')#1$	51.4(3)
$C(3') - C(3) - N(1)$	65.6(3)	$C(3)-N(1)-C(3')$ #1	111.6(3)
$C(3') - C(3) - C(3)$ #1	121.8(3)	$C(1)$ #1-N(1)-C(3')#1	65.0(3)
$N(1)-C(3)-C(3)$ #1	58.8(2)	$C(1)-N(1)-C(3')$ #1	111.1(3)
$C(3') - C(3) - C(4)$	64.1(3)	$C(3)*1-N(1)-C(3')$	111.6(3)
$N(1)-C(3)-C(4)$	102.6(3)		
$C(3)*1-C(3)-C(4)$	142.3(2)		
$C(3)-C(3')-N(1)$	62.9(3)		
$C(3)-C(3')-C(4)$	67.6(3)		
$N(1)-C(3')-C(4)$	103.0(3)		
$C(3)-C(3')-C(1)$	116.4(4)		
$N(1)-C(3')-C(1)$	56.5(2)		
$C(4)-C(3')-C(1)$	141.6(3)		
$N(3)-C(4)-C(3')$	107.3(2)		
$N(3)-C(4)-C(3)$	105.4(2)		
$C(3') - C(4) - C(3)$	48.3(2)		

Estimated standard deviation in the least significant figure are given in parentheses

 $\mathcal{A}^{\mathcal{A}}$

Table V. Hydrogen Coordinates and Isotropic Displacement Parameters $(\hat{A}^2 \times 10^3)$ for 8

SUPPLEMENTAL MATERIAL 3 X-RAY DATA FOR THE INSERTION PRODUCT 9

A crystal of compound 9 was attached to the tip of a glass fiber and mounted on the Siemens P4RA diffractometer for a data collection at 223 ± 1 K. The cell constants for data collection were determined from reflections found from a rotation photograph. Pertinent data collection and reduction information is given in Table I. Atomic coordinates and equivalent isotropic displacement parameters are listed in Table II. Bond distances and angles are listed in Tables III and IV , respectively.

Lorentz and polarization correction were applied. A nonlinear correction based on the decay in the standard reflections was applied to the data. A series of azimuthal reflections was collected for this specimen. A semi-empirical absorption correction based on the azimuthal scans was applied to the data.

The centrosymmetric space group \overline{PI} was chosen based on the lack of symmemtric absences and intensity statistics . However, no suitable solution was derived from direct methods¹. A correct direct methods solution was found in the noncentrosymmetric space group PI which has enantiomers related by a center of inversion. The position of all atom found in one enantiomer were shifted relative to the inversion center to yield the PI molecular structure.

All non-hydrogen atoms were refined with anisotropic thermal parameters. Methylene hydrogen atoms refined as riding atoms with C-H distances of 0.96 Â with individual isotropic thermal parameters. Methyl

hydrogen atoms were refined initially as rigid bodies to give the best torsion angle. During the final set of least-squares these were not refined positionally, but refined with individual group isotropic thermal parameters.

The most interesting feature of this structure is the perfluorobenzyne group which is found inserted into a Si-N bound. The benzyne Si-N moiety is planar.

X-ray data collection and structure solution were done at the Iowa State Molecular Structure Laboratory. Refinement calculations were performed on a Digital Equipment MicroVAX 3100 computer using the SHELXTL-Plus $¹$.</sup>

Reference

1. SHELXTL-plus, Siemens Analytical X-ray Instruments, Inc., Madison, WI.

Figure 1. Unit Cell Drawing for the Structure of 9

Table I. Crystallographic Data for the Insertion Product 9

 $\mathcal{A}^{\mathcal{A}}$

 $\hat{\mathcal{A}}$

Table I. Continued

Diffractometer Used	Siemens P4RA
Radiation	CuK α ($\lambda = 1.54178$ Å)
Temperature(K)	223
Monochromator	Highly-oriented graphite crystal
2θ Range	4.0 to 115.0°
Scan Type	$2\theta - \theta$
Scan Speed	Variable; 6.01 to 23.44°/min. in ω
Scan Range (ω)	1.00° plus K α -separation
Background Measurement	Stationary crystal and stationary counter at beginning and end of scan, each for 25.0% of total scan time
Standard Reflections	3 measured every 97 reflections
Index Ranges	$-9 \le h \le 0, -10 \le k \le 11$ $-14 \leq l \leq 14$
Reflections Collected	3210
Independent Reflections	2969 ($R_{int} = 0.85\%$)
Observed Reflections	2679 (F $\geq 4.0\sigma$ (F))
Absorption Correction	Semi-empirical
Min./Max. Transmission	0.7282 / 0.9435

 $\hat{\mathcal{A}}$

 ~ 10

Atom	X	y	z	σ_{eq}
S1	$-2249(1)$	1597(1)	$-2775(1)$	27(1)
N(1)	$-4692(2)$	206(2)	$-2555(1)$	31(1)
C(1)	$-5050(3)$	258(3)	$-1543(2)$	39(1)
C(2)	$-5006(3)$	1643(3)	$-1026(2)$	42(1)
N(2)	$-3454(2)$	2780(2)	$-967(1)$	34(1)
C(3)	$-3466(4)$	4124(3)	$-497(2)$	49(1)
C(4)	$-5939(3)$	564(3)	$-3306(2)$	39(1)
C(5)	$-5311(3)$	2108(3)	$-3293(2)$	37(1)
N(3)	$-3506(2)$	2567(2)	$-3209(1)$	32(1)
C(6)	$-2887(3)$	4088(3)	$-3138(2)$	48(1)
C(7)	$-4729(3)$	$-1231(2)$	$-2880(2)$	40(1)
C(8)	$-3823(3)$	$-1205(3)$	$-3704(2)$	42(1)
$\mathbf{H}(4)$	$-2312(2)$	31(2)	$-3424(1)$	33(1)
C(9)	$-986(3)$	$-229(3)$	$-3838(2)$	42(1)
C(11)	$-1966(3)$	2433(2)	$-620(2)$	30(1)
C(12)	$-1201(3)$	2600(3)	407(2)	36(1)
F(12)	$-1865(2)$	3075(2)	1124(1)	56(1)

Table II. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement $\text{Coefficients} \in A^2 \times 10^3$

 \sim

Table IL Continued.

40(1)	740(2)	2255(3)	226(3)	C(13)
59(1)	1738(1)	2453(2)	965(2)	F(13)
37(1)	50(2)	1680(3)	867(3)	C(14)
53(1)	364(1)	1338(2)	2269(2)	F(14)
31(1)	$-965(2)$	1455(2)	73(3)	C(15)
42(1)	$-1611(1)$	880(1)	789(2)	F(15)
27(1)	$-1340(2)$	1836(2)	$-1323(3)$	C(16)
30(1)	$-3183(2)$	2807(2)	$-273(3)$	C(21)
32(1)	$-2584(2)$	3740(2)	1249(3)	C(22)
48(1)	$-1565(1)$	3873(1)	1610(2)	F(22)
34(1)	$-2944(2)$	4610(2)	2494(3)	C(23)
50(1)	$-2299(1)$	5493(2)	3934(2)	F(23)
37(1)	$-3961(2)$	4573(2)	2276(3)	C(24)
58(1)	$-4324(1)$	5399(2)	3479(2)	F(24)
36(1)	$-4604(2)$	3675(2)	790(3)	C(25)
54(1)	$-5618(1)$	3623(2)	532(2)	F(25)
34(1)	$-4212(2)$	2845(2)	$-420(3)$	C(26)
47(1)	$-4907(1)$	2021(2)	$-1856(2)$	F(26)

Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ii} tensor

$Si-N(1)$	2.246(2)	$Si-N(3)$	1.731(2)	
$Si-N(4)$	1.734(2)	$Si-C(16)$	1.924(2)	
$Si-C(21)$	1.996(2)	$N(1)-C(1)$	1.487(3)	
$N(1)-C(4)$	1.480(3)	$H(1)-C(7)$	1.481(3)	
$C(1)-C(2)$	1.505(4)	$C(2)-N(2)$	1.458(3)	
$N(2)-C(3)$	1.463(4)	$N(2)-C(11)$	1.427(3)	
$C(4)-C(5)$	1.500(4)	$C(5)-N(3)$	1.452(3)	
$H(3)-C(6)$	1.467(3)	$C(7)-C(8)$	1.503(4)	
$C(8)-H(4)$	1.456(3)	$H(4)-C(9)$	1.456(4)	
$C(11)-C(12)$	1.394(3)	$C(11)-C(16)$	1.406(4)	
$C(12)-F(12)$	1.358(3)	$C(12)-C(13)$	1.376(4)	
$C(13)-F(13)$	1.350(3)	$C(13)-C(14)$	1.363(4)	
$C(14)-F(14)$	1.350(3)	$C(14)-C(15)$	1.379(3)	
$C(15)-F(15)$	1.364(3)	$C(15)-C(16)$	1.384(3)	
$C(21)-C(22)$	1.388(3)	$C(21)-C(26)$	1.397(3)	
$C(22)-F(22)$	1.352(3)	$C(22)-C(23)$	1.382(3)	
$C(23)-P(23)$	1.352(2)	$C(23)-C(24)$	1.365(4)	

Table III. Bond Distances (Å) for the Insertion Product $\,$ 9 $\,$

Table III. Continued.

^aEstimated standard deviation in the least significant figure are given in parentheses

 \mathcal{A}

Table IV. Bond Angles in degrees for 9

 $\hat{\mathcal{A}}$

^aEstimated standard deviation in the least significant figure are given in parentheses

 $\hat{\mathcal{A}}$

Atom	σ_{11}	\mathbf{u}_{22}	σ_{33}	σ_{12}	σ_{13}	σ_{23}
Si	22(1)	31(1)	26(1)	9(1)	6(1)	4(1)
N(1)	24(1)	34(1)	32(1)	8(1)	5(1)	7(1)
C(1)	26(1)	49(1)	40(1)	6(1)	12(1)	13(1)
C(2)	28(1)	67(2)	34(1)	17(1)	11(1)	11(1)
N(2)	30(1)	43(1)	32(1)	18(1)	9(1)	4(1)
C(3)	57(2)	56(2)	39(1)	32(1)	6(1)	$-3(1)$
C(4)	22(1)	50(2)	39(1)	10(1)	O(1)	6(1)
C(5)	31(1)	49(1)	34(1)	21(1)	3(1)	8(1)
N(3)	31(1)	34(1)	32(1)	14(1)	8(1)	8(1)
C(6)	55(2)	39(1)	58(2)	21(1)	24(1)	16(1)
C(7)	31(1)	32(1)	50(2)	5(1)	8(1)	7(1)
C(8)	37(1)	33(1)	48(2)	5(1)	9(1)	$-4(1)$
N(4)	26(1)	33(1)	38(1)	8(1)	11(1)	1(1)
C(9)	37(1)	42(1)	50(2)	16(1)	16(1)	O(1)
C(11)	24(1)	34(1)	28(1)	7(1)	5(1)	6(1)
C(12)	38(1)	45(1)	26(1)	13(1)	12(1)	5(1)
F(12)	68(1)	74(1)	34(1)	35(1)	15(1)	8(1)
C(13)	37(1)	47(1)	27(1)	6(1)	$-2(1)$	14(1)

Table V. Anisotropic Displacement Coefficients (\AA^2x10^3) for 9

Table V. Continued

F(13)	59(1)	78(1)	31(1)	20(1)	$-5(1)$	15(1)
C(14)	22(1)	46(1)	42(1)	10(1)	3(1)	20(1)
F(14)	29(1)	77(1)	56(1)	23(1)	3(1)	29(1)
C(15)	23(1)	35(1)	37(1)	9(1)	11(1)	11(1)
F(15)	29(1)	59(1)	46(1)	22(1)	11(1)	12(1)
C(16)	21(1)	31(1)	28(1)	5(1)	7(1)	8(1)
C(21)	30(1)	31(1)	29(1)	11(1)	$8(1)$.	2(1)
C(22)	34(1)	35(1)	25(1)	10(1)	7(1)	5(1)
F(22)	46(1)	48(1)	28(1)	$-8(1)$	1(1)	4(1)
C(23)	27(1)	28(1)	43(1)	5(1)	6(1)	6(1)
F(23)	35(1)	45(1)	55(1)	$-3(1)$	3(1)	12(1)
C(24)	38(1)	33(1)	46(2)	11(1)	23(1)	15(1)
F(24)	55(1)	56(1)	62(1)	3(1)	29(1)	23(1)
C(25)	49(2)	37(1)	27(1)	18(1)	16(1)	10(1)
F(25)	72(1)	56(1)	36(1)	17(1)	22(1)	16(1)
C(26)	33(1)	35(1)	29(1)	9(1)	4(1)	1(1)
F(26)	42(1)	53(1)	28(1)	O(1)	O(1)	1(1)

The anisotropic displacement factor exponent takes the form: -2π²(h²a*²U₁₁+ ...+2hka*b*U₁₂)

Atom	$\pmb{\mathbf{x}}$	y	z	\mathbb{U}_{eq}
H(1A)	-4178	26	-1107	35(6)
H(1B)	-6110	-446	-1582	47(7)
H(2A)	-5136	1612	-351	48(7)
H(2B)	-5945	1848	-1416	52(8)
H(3A)	-2371	4810	-406	67(5)
H(3B)	-3745	4091	142	67(5)
H(3C)	-4295	4370	-959	67(5)
$H(4\Lambda)$	-6925	399	-3049	54(8)
H(4B)	-6245	-19	-3956	67(9)
H(51)	-5541	2663	-2771	29(6)
H(5B)	-5890	2248	-3932	42(7)
H(61)	-1679	4474	-3010	86(6)
H(6B)	-3243	4456	-2587	86(6)
H(6C)	-3406	4331	-3752	86(6)
H(71)	-5888	-1779	-3195	41(7)
H(7B)	-4316	-1673	-2345	50(8)
H(8A)	-4529	-1253	-4359	43(7)

Table VI. H-atom Coordinates $(x10^4)$ and Isotropic Displacement Coefficients (\AA^2x10^3) for 9

Table VI. Continued.

 $\mathcal{A}^{\mathcal{A}}$

PAPER 4. NON-STRAIGHTFORWARD SUBSTITUTION REACTIONS AT PENTACOORDINATE SILICON: INTERESTING HYDRIDE AND FLUORIDE TRANSFER REACTIONS

ABSTRACT

The syntheses of aminoazasilatranes of the type $R_2NSi(R'NCH_2CH_2)$ ₃N $(R' = H, R = H (2a), CH_3 (3a), CH_2CH_3 (4a), Si(CH_3)$ ₃ **(6a)**, $R' = CH_3, R = H (2b)$, **CH3 (3b), CH2CH3 (4b),** Si(CH3)3 **(6b)** via nucleophilic substitution reactions of $CISi(R'NCH_2CH_2)_3$ $(R' = H (7a), R' = CH_3 (7b),$ respectively) with amide anions are reported. Reactivities of **7a** and **7b** toward other nucleophilic reagents such as alkyl lithiums and group I metal alkoxides are also described. It is found that the equatorial NR' functionalities significantly influence the reaction pathways. With strong bases, lithiation of the equatorial NH hydrogens of **7a** was observed to be the main pathway along with some nucleophilic substitution products and hydride transfer product **la.** With **7b,** however, equatorial nitrogen lithiation is precluded and its reactions with nucleophiles can produce substantial amounts of nucleophilic substitution product as well as hydride transfer product **lb.** The relative ratios of these products depend substantially on stereoelectronic factors, the nature of the nucleophilic reagents and the reaction conditions. In the case of the reaction of **7b** with BrC_6F_5/n -BuLi, three products, namely, $C_6F_5Si(CH_3NCH_2CH_2)_3N$ (13b), $FSi(CH_2NCH_2CH_2)_3N$ (14b) and C_6F_5Si -(CH3NCH2CH2)2(C6F4CH3NCH2CH2)N **(15)** formed in an approximate ratio of 1:2:1. The formation of **15** is attributed to perfluorobenzyne insertion into a Si-N_{eq} bond of (13b). Interestingly, the plane defined by the axial NSi₂ moiety in **6a** is found to be fixed at the apical position of the silicon, providing an interesting example of $p\pi$ -d π interaction between a pentacoordinate silicon

and a nitrogen. However, the counterpart axial moiety in **6b** freely rotates around the apical Si-N bond due to steric interactions with nearby methyl groups on the cage. Compounds **14b** and **15** have been characterized by single crystal X-ray diffraction studies. The relatively short transannular distance between Si and N of 2.246 (2) Â in **15** indicates the preservation of donoracceptor $Si \leftarrow N$ in the presence of the seven-membered ring. The crystal data are as follows: **14b**, monoclinic, $P2_{1/m}$, $\alpha = 7.352$ (1) Å, $b = 12.361$ (2) Å, $c =$ 7.512 (1) Å, $β = 119.30$ (1)^o, $Z = 2$; **15**, triclinic, $P\overline{1}$, $a = 8.586$ (2) Å, $b = 10.215$ (2) Å, $c = 13.745$ (3) Å, $2 = 95.62$ (2)°, $\beta = 102.25$ (2)°, $\gamma = 107.74$ (2)°, and $Z = 2$.

INTRODUCTION

As part of our exploration of the chemistry of atranes,¹ we became interested synthesizing candidates for the MOCVD of metallic and nonmetallic nitrides. In the case of silicon nitride, such compounds are represented by **la-6a** of structure type **A** and **lb 6b** of structure type **B**.2 The preferred Z substituents in such precursors are H, $NH₂$ or $NR₂$ in order to

minimize silicon carbide impurity formation. Also potentially militating against silicon carbide formation is the immediate proximity to silicon of five nitrogens, four of them in the chelating portion of these molecules.

Although $1a^3$ and $1b^4$ have been reported, we here describe improved syntheses for these azasilatranes and the results of our attempts to make the new compounds **2a,b-6a,b.** It may be noted here that our earlier attempts to make 3a and 3b by the transamination of Si(NMe₂)₄ with (H₂NCH₂CH₂)₃N and (HMeNCH₂CH₂)₃N, respectively, failed,^{4,5} although the former reaction was reported in a patent⁶ to give **3a**. We therefore turned our attention to the possibility of nucleophilically substituting the chloride in the known

compound $7a⁴$ and the new derivative $7b$ (whose synthesis we report here) in order to achieve the target compounds **2a,b-6a,b.** We shall see that the reaction of **7a** and **7b** with LiNR2, in addition to direct nucleophilic substitution, also gives **la** and **lb** in small to substantial amounts in an interesting hydride transfer process that depends on R and on the structure type $(A \text{ or } B)$.

During our investigation of some of the scope of the above-mentioned hydride transfer reactions, we also reacted **7a** and **7b** with lithium alkyls and aryls in order to determine to what degree substitution reactions would occur giving **8a,b-12a,b,** and to what extent such reactions might be accompanied by

hydride transfer to give **la** and **lb.** We demonstrate that the hydride transfer product can be the dominating and even the exclusive product. We also show that $CISi(NMe₂)₃$ is less susceptible to such hydride transfer reactions, undergoing such transformations only at higher temperatures over prolonged reaction times.

The reaction of **7b** with LiCgFs gives not only the expected species **13b,** but also the fluoride transfer product **14b** and the novel tetrafluorobenzyne insertion product **15.** The structures of both **14b** and **15** have been determined by X-ray diffraction methods.

EXPERIMENTAL SECTION

All reactions were carried out under the strict exclusion of moisture using vacuum line and Schlenk **techniques.7** Solvents such as toluene, tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone ketyl prior to use. t -Butyl lithium, sec-butyl lithium, lithium dimethyl amide, lithium diethyl amide, lithium bis(trimethylsilyl) amide, phenyl lithium and methyl lithium were purchased from Aldrich and were used as received. n -Butyl lithium was obtained from Alfa Products as a 2.01 M solution in hexane and was used without purification. Tris(dimethylamino)silane was obtained from Hüls America, Inc. and was used as received. Tren ($(H_2NCH_2CH_2)$ ₃N) was distilled at ~85 °C/15 x 10⁻³ Torr from $LiAlH₄$ after receipt as a research sample from the W. R. Grace Co. Me₃-tren ((MeNHCH₂CH₂)₃N) was prepared from tren using a literature procedure.⁸ Carbon tetrachloride was distilled from P_4O_{10} before use. Lithium di(isopropyl)amide was prepared by adding n -butyl lithium in hexane to excess (i-Pr**)2NH** followed by evaporation of the solvent and unreacted **amine.**^ Perfluorophenyl lithium was prepared *in situ* by mixing equivalent amounts of pentafluorobromobenzene and n-butyl lithium in pentane at -50 °C.¹⁰

NMR spectra were recorded on a Nicolet NT 300 (¹H) or a Varian VXR 300 machine $(^{1}H, ^{13}C, ^{29}Si, ^{19}F)$ with a deuterated solvent as an internal lock. IH NMR (299.949 MHz) spectra were referenced to the chemical shift of the residual proton signal of the deuterated solvent (7.15 ppm for benzene- d_6) or TMS as the internal reference. 13 C (75.429 MHz) spectra were referenced to solvent signals (128.0 ppm for C_6D_6 and 77.0 ppm for $CDCl_3$). ²⁹Si (59.585 MHz) NMR spectra were referenced to TMS in C_6D_6 (20% by volume) as an external standard and recorded in the presence of -5% by weight (with respect to the sample) of Cr(acac)₃ as a relaxation agent. The recording temperature was 20 °C except where specified. 19 F (282.186 MHz) NMR spectra were referenced to perfluorobenzene $(-163.00$ ppm relative to $CFCI₃¹¹)$ in C_6D_6 (15% by volume) as an external standard. ⁷Li (116.568 MHz) NMR spectra were referenced¹¹ to LiOD (4 M solution) in D₂O as an external standard. ²H (46.043 MHz) NMR spectra were recorded with C_6D_6 as the internal reference.¹¹ Variable temperature (VT) NMR spectra were measured in toluene- d_8 from -70 to +95 °C on a Varian VXR 300 spectrometer with an accuracy of ± 1 °C. Coalescence temperatures were determined by recording a series of spectra taken at incremental temperatures (1 °C for the final ones). Frequency differences Δv_{AB} of ¹⁹F NMR spectra were measured at 10 temperatures in the low temperature region and were extrapolated to the corresponding T_c .

Mass spectra were obtained on a Finnigan 4000 instrument (low resolution, 70 eV, EI) and a Kratos MS-50 instrument (high resolution, 70 ev, EI). The masses are reported for the most abundant isotope present. Elemental analyses were performed by Desert Analytics, Tucson, Arizona. Melting points were measured with a Thomas-Hoover capillary apparatus and are uncorrected.

1-Hydroazasilatrane, la. Although this compound was prepared **earlier**,3.4 an improved method is given here. To a solution of 1,87 g (12.8 mmol) of tren

in 10 mL of toluene was added 2.30 g (14.3 mmol) of $HSi(NMe₂)₃$. The clear solution was warmed at 100 \degree C for 3 h and then was refluxed until HNMe₂ evolution ceased *(ca.* 3 h). After slow removal of the solvent under vacuum, clear crystals (1.98 g) of product **la** were collected by sublimation at 50 *°C/20* x 10^{-3} mmHg in 90.0% yield (based on tren) (lit.⁴, 72-84% yield). M.p. 78-80 °C (lit.⁴, 77-79 °C). ¹H NMR (C₆D₆) 4.64 (s, 1 H, SiH), 2.71 (dt, 6 H, NHCH₂CH₂, 3 J_{HCNH} = 2.5 Hz, 3 J_{HCCH} = 5.7 Hz), 2.13 (t, 6 H, NHCH₂CH₂), 0.95 (br, 3 H, NH). ¹³C NMR (C₆D₆) 50.89 (HNCH₂CH₂CH₂), 36.52 (HNCH₂CH₂); ²⁹Si NMR (C_6D_6) -80.98. ¹H, ¹³C and ²⁹Si NMR spectra in CDCl₃ were the same as those reported earlier. $4,11$

1-Hydro-N, N', N^'-trimethylazasilatrane, lb. Although this compound was synthesized earlier in our laboratories,⁴ a preparation giving a substantially higher yield is provided here. A solution of $HSi(NMe₂)₃$ (13.6 g, 84.3 mmol) and 14.6 g (76.0 mmol) of $(HM e NCH₂CH₂)₃N$ in 140 mL of toluene was warmed at 100 °C for 3 h and then refluxed until no more HNMe₂ was evolved $(ca. 7 h)$. Slow removal of the solvent in vacuo gave a clear crystalline product. Further purification by sublimation at 60 \degree C/30 x 10⁻³ mmHg afforded 15.5 g of 3 in 93% yield (based on Me₃-tren), (lit.⁴, 54%). ¹H NMR (C_6D_6) 4.33 (s, 1 H, SiH), 2.85 (s, 9 H, NMe), 2.60 (t, 6 H, SiN(CH₃)CH₂CH₂, ${}^{3}J_{\text{HCCH}} = 5.7 \text{ Hz}$), 2.12 (t, 6 H, SiN(CH₃)CH₂CH₂); ¹³C NMR (C₆D₆): 48.56 $(MeNCH_2CH_2)$, 45.86 $(MeNCH_2CH_2N)$, 36.62 (MeN) ; ²⁹Si NMR (C_6D_6) : -62.37. Anal. calcd for C₉H₂₂N₄Si: C, 50.42; H, 10.34; N, 26.13; Si, 13.10; Found: C, 48.44; H, 9.78; N, 28.67; Si, 13.63.

1-Chloroazasilatrane, 7a, Although this compound was prepared earlier in our laboratories, 4 a synthesis with an improved yield and requiring no purification is given here, as well as two new routes to **7a.**

Method A: Compound la (2.05 g, 11.9 mmol) was introduced into an addition funnel equipped with a side arm whose connections to the funnel were near the top and bottom. Between these connections was a medium size frit, and a stopcock was attached near the top of the funnel. The funnel was attached via a 20/24 joint to a 100 mL round bottom flask containing a stirring bar. To the funnel was added 40 mL of $CCl₄$ and then the funnel was stoppered. The extract that drained from the funnel was stirred at room tempertuare. After *ca.* 5 h, the apparatus was inverted to move the suspension through the side arm of the funnel to the opposite side of the funnel. The apparatus was set upright to filter and collect the suspension that had formed in the flask. After the extract had drained back into the flask through the filter, stirring was resumed for approximately another 5 h. This separation/reaction cycle was repeated (ca. ten times) until the solution in the flask remained clear after stirring for 5 h, indicating completion of the reaction. After evaporating excess carbon tetrachloride and chloroform under vacuum, the solid residue was extracted with benzene by converting the (cleaned) apparatus into a soxhlet extractor. The benzene solution was refluxed at -35° under vacuum to avoid coloration (decomposition) of product at higher temperature. Removal of C_6H_6 under vacuum afforded a pure white powder in yields ranging from $60-70\%$ (lit,⁴ 30% yield).

 1 H NMR (C₆D₆) 2.55 (dt, 6 H, HNCH₂CH₂, 3 J_{HCNH} = 2.4 Hz, 3 J_{HCCH} = 5.7 Hz), 1.90 (t, 6 H, HNCH₂CH₂), 1.41 (b, 3 H, NH); ¹H NMR (CDCl₃), 3.07 (t, 6 H, $HNCH_2CH_2$), 2.81 (t, 6 H, HNCH₂CH₂), 1.55 (b, 3 H, NH); ¹³C NMR (C₆D₆) 51.92 (HNCH₂CH₂), 37.16 (HNCH₂CH₂); ²⁹Si NMR (C₆D₆) -82.18. Although the first two ¹H NMR chemical shifts in CDCl₃ are \sim 0.3 ppm to lower field than the values we reported earlier in the same solvent,⁴ our ¹³C NMR and $29Si$ data in this solvent were consistent with those given earlier.⁴ This compound decomposed in the presence of $H₂O$, MeOH and EtOH giving tren. However, it is stable in air over a period of \sim 5 h.

Method B. Compound la (0.46 g, 2.6 mmol) was mixed with 0.64 g (2.7 mmol) of C_2Cl_6 in 15 mL of toluene. The solution was refluxed for 24 h, and then filtered. The solid residue was washed with 4×20 mL of C_6H_6 giving 0.25 g (~46% yield) of brownish crude product after drying at 5×10^{-3} mmHg at room temperature overnight. Despite the discoloration, the 1 H NMR spectrum indicated only the presence of 7a.

Method C. Compound 1a $(0.361 \text{ g}, 2.10 \text{ mmol})$ was mixed with 0.581 g (2.10 mmol) mmol) of ClCPhg in 20 mL of toluene. The solution was refluxed for 12 h resulting in the formation of a yellowish solid. The toluene was removed under vacuum and the solid was extracted with pentane to remove HCPhg. The solid residue was then washed with 40 mL of C_6H_6 giving a 42% yield of brownish crude product. The 1 H NMR spectrum indicated contamination by of the product HCPhg.
1-Chloro-N, N, N-trimethylazasilatrane, 7b. Although this compound was prepared earlier in these **laboratories,**5 a modified approach and one additional route are given here.

Method A: N-chlorosuccinimide (2.47 g, 19.2 mmol) dissolved in 50 mL of CH2CI2 was slowly added to a solution of **lb** (4.03 g, 18.8 mmol) in 25 mL of CH_2Cl_2 at -50 °C. The solution was allowed to warm to -10 °C and was stirred for 20 min. All the volatiles were removed under vacuum while the solution was kept at -10 $\rm{^{\circ}C}$. The solid was then extracted with 4 x 30 mL portions of toluene. Evaporation of the toluene under vacuum afforded 2.62 g of white crystalline product, contaminated by a trace amount of the by-product succinimide, which was removed by sublimation at $46 \text{ °C}/15 \times 10^{-3}$ mmHg for \sim 72 h. The solid was once again extracted with toluene and 2.34 g of pure colorless crystalline **7b** was obtained in 52% yield by removing the solvent under vacuum. The yield of this reaction was somewhat erratic, ranging from 50-87%. The previous yield of 60% obtained in our laboratories was crude **7b** contaminated by succinmide.⁵ M.p. 174-175 °C. ¹H NMR (C₆D₆) 3.08 (s, 9 H, NCH₃), 2.61 (t, 6 H, ³J_{HCCH} = 5.7 Hz, CH₃NCH₂CH₂), 2.01 (t, 6 H, $CH_3NCH_2CH_2$; ¹H NMR (CDCl₃), 2.96 (t, 6 H, ³J_{HCCH} = 5.7 Hz, $CH_3NCH_2CH_2$), 2.77 (t, 6 H, $CH_3NCH_2CH_2$), 2.75 (s, 9 H, NCH₃); ¹³C NMR (C_6D_6) 47.68 (CH₃NCH₂CH₂), 46.77 (CH₃NCH₂CH₂), 39.25 (CH₃); ²⁹Si NMR (C_6D_6) -87.22 (lit., ¹⁸ -85.6, CCl_2D_2). LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 248.1 (31.2, M+), 213.2 (100, M+ - CI), 204.1 (59.2, M+ - NMe2). HRMS for M+ (C9H2iSiN4Cl) calcd: 248.12240, found: 248.12229.

Method B: A mixture of 0.278 g (1.30 mmol) of **lb** and 0.0308 g (1.30 mmol) of C_2Cl_6 was dissolved in 20 mL of toluene. No product was observed by ¹H NMR after evaporating a portion of the yellowish brown solution that formed after 10 h at 65 °C. After refluxing the solution for 13 h, a clear solution with a dark precipitate resulted. The mixture was filtered and the solid residue was washed with 3 x 10 mL portions of benzene. The combined solutions were dried under vacuum at 10×10^{-3} mmHg for 5 h and 0.130 g of a brownish red product was obtained in -40% yield. Despite the coloration, the ¹H and ¹³C NMR spectra revealed only resonances consistent with product.

l-Aminoazasilatrane, 2a.

Method A: Compound **7a** (0.99 g, 4.8 mmol) was mixed with 0.21 g (5.1) mmol) of NaNH2 (95% purity, Aldrich) in a dry box. About 80 mL of liquid ammonia from a blue NHg/Na solution was condensed into the liquid-N2 cooled flask. The reaction mixture was stirred at \sim -35 °C for 3 h after which it was allowed to warm up slowly to evaporate the ammonia. The slightly yellowish solid residue that remained was pure product according to its ${}^{1}H$ NMR spectrum. By subliming this material at 35°/15 x 10-3 mmHg, a colorless crystalline form of the product was collected in 92% yield. M.p. 40- 41 °C; ¹H NMR (C_6D_6) 2.74 (dt, 6 H, SiHNC H_2CH_2 , ${}^3J_{HCCH}$ = 5.70 Hz, ${}^3J_{HNCH}$ $= 2.4$), 2.10 (t, 6 H, SiHNCH₂CH₂), 0.83 (br, 3 H, NH), 0.08 (br, 2 H, NH₂); ¹H NMR (CDCl₃) 2.98 (t, 6 H, HNC H_2 CH₂, 3J _{HCCH} = 5.7 Hz), 2.64 (t, 6 H, $HNCH_2CH_2N$, 0.95 (very br, s, 3 H, NH); ¹H NMR (CD₃CN), 2.87 (t, 6 H, NHCH₂CH₂, 3 J_{HCCH} = 5.9 Hz), 2.56 (t, 6 H, NHCH₂CH₂), 0.38 (br, 3 H, NH);

¹³C NMR (C₆D₆) 50.50 (HNCH₂CH₂), 37.53 (HNCH₂CH₂); ¹³C NMR (CDCl₃) 50.18 (HNCH₂CH₂), 36.82 (HNCH₂CH₂); ²⁹Si NMR (C₆D₆) -74.54. MS (EI, 70 ev) *miz* (relative intensity, proposed ion) 187.0 (57.5, M+), 171 (40.9, M+-NH2), 159.1 (100.0, M⁺-CH₂N), 145.1 (73.3, M⁺-CH₂CH₂NH), 101 (24.3, M⁺- $2CH_2CH_2NH$; HRMS for M⁺ (C₆H₁₇N₅Si) calcd. 187.12532, found 187.12534; M^+ -CH₂N (C₅H₁₅N₄Si) calcd. 159.10578, found 159.10619. Anal. calcd for $C_6H_{17}N_5Si$: C, 38.46; H, 9.25; N, 36.36; found: C, 37.75; H, 9.28; N, 36.62.

Method B: About 40 mL of NH3 distilled from a blue liquid-NHg/Na solution was condensed into a 50 mL flask (with a side arm) containing 0.36 g (1.7 mmol) of **7a.** Sodium (40 mg, 1.7 mmol) was then added and the characteristic blue color appeared instantly. The blue solution was stirred at -35 °C for 3 h and then was allowed to warm to room temperature with slow evaporation of NH_3 . The residue was extracted with 3×15 mL portions of benzene and then all the volatiles were removed under vacuum. $\,{}^{1}$ H NMR of 0.25 g of the crude product so obtained revealed that it contained **2a** and tren in a ratio of about 3:2 and some unreacted **7a.** No attempt was made to separate the mixture.

l-Amino-N^^'-triinethylazasilatrane, 2b.

Method A: In a drybox, **7b** (0.13 g, 0.52 mmol) was mixed with 0.030 g (0.75 mmol) of NaNH2. To this mixture was added 20 mL of THF and the solution was refluxed for 60 h. Only about half of the starting material was converted into the substitution product according to the ${}^{1}H$ NMR spectrum of the reaction mixture. After refluxing for another 80 h, the solvent was removed under vacuum and the solid residue was extracted with 4 x 15 mL

portions of pentane. Evaporation of the pentane under vacuum afforded a crystalline solid which upon sublimation at 60 \degree C and 10 x 10⁻³ mmHg afforded **2b** in 87% yield. M.p. 116-117 °C. IH NMR (CeDe) **2.90** (s, 9 H, CH3), 2.70 (t, 6 H, 3 J_{HCCH} = 5.7 Hz, CH₃NCH₂CH₂), 2.15 (t, 6 H, CH₃NCH₂CH₂); ¹³C NMR (C_6D_6) 48.08 (CH₃NCH₂CH₂), 47.35 (CH₃NCH₂CH₂), 38.97 (CH₃); ²⁹Si (C_6D_6) -85.08. LRMS (70 ev, EI) 229.2 (93%, M⁺), 213.2 (100.0%, M⁺-NH₂); HRMS for M+ (CgH238iN5), calcd: 229.17206, found: 229.17227.

Method B: To a mixture of 0.13 g (0.52 mmol) of **7b** and 0.060 g (1.5 mmol) of NaNH2 was condensed *ca.* 25 mL of sodium-dried liquid NH3. The reaction mixture was stirred at -30 \degree C for 2 1/2 h. After slowly evaporating all the ammonia, only unreacted 7b remained according to the ¹H NMR spectrum of residue. The starting material was transferred into a thick-walled glass tube together with freshly cut sodium (18 mg, 0.78 mmol, 50% excess). About 3 mL of dry ammonia was condensed into the tube which was flame sealed while the contents were cooled at -80 °C. The tube was then placed in a large metal can in the hood where it was kept at room temperature for 26 d and then warmed at 65 $\mathrm{^{\circ}C}$ for 4 d. The tube was cooled in liquid nitrogen, opened, and the solid residue extracted with 3 x 10 mL portions of pentane after evaporating NH3. Removal of pentane under vacuum afforded 0.075 g of a crystalline product whose IH NMR spectrum revealed an approximate ratio of $5:1$ of $2b$ to $7b$.

l-Dimethylamino-azasilatrane, 3a. Compound **7a** (0.25 g, 1.2 mmol) was mixed with 0.070 g (1.3 mmol) of LiNMe₂ in a dry box and then 25 mL of diethyl ether was added. The suspension was stirred at room temperature

for 48 h. After filtration, the ether was removed under vacuum and then the solid residue was extracted with 3 x 10 mL portions of benzene. Evaporation of the benzene resulted in a 60% yield of crystalline product which was purified by sublimation at 75 °C and 6 x 10⁻³ mmHg. M.p. 74-75°. ¹H NMR (C_6D_6) 2.75 (s, 6 H, $(CH_3)_2$), 2.74 (dt, 6 H, HNCH₂CH₂, ³J_{HNCH} = 3.0, ³J_{HCCH} = 5.7 Hz), 2.08 (t, 6 H, HNCH₂CH₂N), 0.76 (b, 3 H, NH); ¹H NMR (CDCl₃) 2.93 (dt, 6 H, $HNCH_2CH_2$, ${}^3J_{HNCH}$ = 2.7 Hz, J_{HCCH} = 5.7 Hz), 2.57 (t, 6 H, $HNCH_2CH_2$), 2.35 (s, 6 H, NMe₂), 0.81 (s, 3 H, NH); ¹³C NMR (C₆D₆) 50.57 $(HNCH_2CH_2N)$, 37.67 $(HNCH_2CH_2N)$ 41.00 $((CH_3)_2)$; ¹³C NMR (CDCl₃): 50.53 $(HNCH_2CH_2)$, 37.13 (HNCH₂CH₂N), 40.51 ((CH₃)₂); ²⁹Si NMR (C₆D₆) -72.58; $29Si$ NMR (CDCl₃) -75.26. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 215.2 (13.5, M⁺), 171.1 (100, M⁺ - NMe₂), 128.1 (3.4, M⁺ - NMe₂ - $NH_2CH_2CH_2$); HRMS for M⁺ (C₈H₂₁N₅Si) calcd: 215.15662, found: 215.15664. Anal, for C₈H₂₁N₅Si: calcd: C, 44.61; H, 9.83; N, 32.52. Found: C, 44.76; H, 10.19; N, 32.59.

l-Dimethylamino-N_aN'N'^{*-*}**trimethylazasilatrane, 3b.** To a mixture of 1.02 g (4.11 mmol) of **7b** and 0.23 g (4.4 mmol) of LiNMe₂ was added 50 mL of diethyl ether. The solution was stirred at room temperature for 72 h. After removal of ether under vacuum, the residue was extracted with 3 x 15 mL portions of benzene. A ¹H NMR spectrum of the solution revealed the formation of **3b** and **lb** in a ratio of approximate 5:1. A crystalline mixture (0.87 g) was obtained after evaporating the volatiles. Separation was achieved by subliming the lighter **lb** at 30 °C for 2 d, followed by subliming **3b** at 60 °C or above. Repeated slow sublimation afforded 0.43 g of pure **3b** in 41% yield. ^H NMR (C_6D_6) 2.82 (s, 6 H, NMe₂), 2.64 (s, 9 H, NCH₃), 2.61 (t, 6 H, $(CH_3NCH_2CH_2, {}^3J_{HCCH} = 5.7 Hz)$, 2.21 (t, 6 H, CH₃NCH₂CH₂); ¹³C NMR (C_6D_6) 51.16 $(CH_3NCH_2CH_2)$, 50.99 $(CH_3NCH_2CH_2)$, 40.22 $(N(CH_3)_2)$, 37.71 $(SiNCH₃)$; ²⁹Si NMR $(C₆D₆)$ -51.39. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 257.2 (2.4, M+), 213.2 (100.0, M+ - NMe2), 199.1 (1.7), 170.1 (4.9), 156.1 (12.8), 129.1 (4.5), 113.1 (11.3); HRMS for M^{+} (C₁₁H₂₇N₅Si) calcd: 257.20358, Found: 257.20387.

1-Diethylamino-azasilatrane, 4a.

Method A: A solution of **7a** (8 mg, 0.04 mmol) in 0.5 mL of THF- d_8 was prepared. ¹H NMR data for **7a** (THF- d_8) 2.99 (dt, 6 H, ${}^3J_{\text{HCCH}} = 5.9$ Hz, $3J_{HNCH}$ = 2.4 Hz, HNC H_2CH_2), 2.75 (t, 6 H, HNCH₂CH₂), 1.29 (b, 3 H, NH); ¹³C NMR data for **7a** (THF-d₈), 52.08 (HNCH₂CH₂), 37.95 (HNCH₂CH₂). LiNEt₂ (3 mg, 0.04 mmol) was dissolved separately in 0.4 mL of THF- d_{8} . ¹H NMR data for LiNEt₂ (THF-d₈), 2.83 (q, 4 H, 3 J_{HCCH} = 7.2 Hz, CH₂), 1.04 (t, 6 H, CH₃); ¹³C NMR data for LiNEt₂ (THF- d_8), 50.36 (br, CH₂), 18.56 (CH₃). The ¹H and ¹³C NMR spectra of the combined THF- d_8 solutions revealed the instantaneous and almost quantitative formation of HEt_2N plus a precipitate. ¹H NMR of HNEt₂ (THF-d₈), 2.55 (q, 4 H, CH₂), 1.02 (t, 6 H, CH₃, ³J_{HCCH}= 7.2 Hz); ¹³C NMR: 44.80 (CH₂), 15.82 (CH₃).

Method B: To a solution of 0.10 g (0.5 mmol) of **7a** in 25 mL of THF at -80 °C was slowly added 20 mL of a THF solution of 67 mg (0.80 mmol) of LiNEt2 until all the starting material was consumed as monitored by 1H NMR spectroscopy. The mixture was stirred at -80 $\rm{^{\circ}C}$ (ca. 1 h). Removal of THF under vacuum followed by extraction of the residue with 4×5 mL portions of benzene gave a yellowish extract. Evaporation of the solvent from the extract under vacuum afforded the crude product **4a** as a semi-solid in **19%** yield. NMR (C_6D_6) 3.07 $(q, 4H, NCH_2CH_3, \frac{3J}{HCCH} = 6.9 Hz)$, 2.77 $(t, 6H,$ $HNCH_2CH_2$, ${}^{3}JHCCH$ = 5.7 Hz), 2.12 (t, 6 H, $HNCH_2CH_2$), 1.18 (t, 6 H, NCH_2CH_3 , ${}^{3}J_{HCCH}$ = 6.9 Hz); ¹H NMR (CDCl₃) 2.96 (t, 6 H, HNC H_2CH_2 , 3 **J** 3 **HCCH** = 6.0 Hz), 2.75 (q, 4 H, NCH₂CH₃, 3 **J**_{HCCH} = 6.9 Hz), 2.59 (t, 6 H, HNCH2CH2), **0.93** (t, **6** H, NCH2C^3); NMR (CDCI3) **50.37** (HNCH2CH2N), **41.75** (NCH2CH3), **37.09** (HNCH2CH2), **16.55** (NCH2CH3). MS **(70** ev, EI) *miz* (relative intensity, proposed ion) **243.4 (4.7** M+), **171.1 (100,** M+ - NEt2), **200.2** $(3.3, M^+ - HNCH_2CH_2).$

l-Diethylamino-N^'^'-trimethylazasilatrane, 4b. Compound **7b** (0.42 g, 1.7 mmol) was mixed with 0.15 g (1.8 mmol) of $LiNEt₂$ in 45 mL of benzene. The solution was heated at 65 °C for 24 h. A ¹H NMR spectrum of the solution showed the absence of the starting material and the formation of compounds **4b** and **lb** in a ratio of about 4:1. After filtration and removal of the solvent under vacuum, 0.34 g of crystalline solid was obtained. Repeated sublimations at 30 °C for 1 day to remove the lighter **lb** followed by further sublimation at 70 °C afforded 0.12 g of pure 4b in 25% yield. ¹H NMR (C₆D₆) 3.14 (q, 4 H, NCH₂CH₃, ³J_{HCCH} = 7.8 Hz), 2.56 (s, 9 H, CH₃), 2.54 (t, 6 H, $CH_3NCH_2CH_2$, ${}^{3}J_{HCCH}$ = 5.7 Hz), 2.40 (t, 6 H, $CH_3NCH_2CH_2$), 1.17 (t, 6 H, NCH_2CH_3); ¹³C (C₆D₆) 52.13 (MeNCH₂CH₂), 51.08 (MeNCH₂CH₂), 40.05 (NCH_2CH_3) , 36.28 (NCH₃), 15.23 (NCH₂CH₃); ²⁹Si NMR (C₆D₆) -37.92.

Attempted synthesis of l-di-isopropylamino-azasilatrane, 5a. Into an NMR tube was placed a solution of 4 mg (0.04 mmol) of LiN-*i*-Pr₂ in 0.4 mL of THFd₈. ¹H NMR 3.02 (h, 2 H, NHC(CH₃)₂, ³J_{HCCH} = 6.3 Hz), 0.98 (d, 12 H, CH₃); ¹³C NMR 52.21 (NCH(CH₃)₂), 27.77 (NCHC(CH₃)₂). When 0.4 mL of a THF- d_8 solution of 8 mg (0.04 mmol) of **7a** was added at room temperature, immediate virtually quantitative conversion to $HN(CH(CH_3)_2)_2$ was observed. ¹H NMR (THF-d₈) for $HN(CH(CH_3)_2)$, 2.86 (h, 2 H, ³J_{HCCH} = 6.3 Hz, $CH(CH₃)₂$), 0.98 (d, 12 H, CH₃); ¹³C NMR (THF- $d₈$), 45.85 (CH(CH₃)₂), 23.86 $(CH₃).$

1-Di-isopropylamino-N,N',N''-trimethyl-azasilatrane, 5b. Compound 7b (24) mg, 0.10 mmol) was mixed with 12 mg (0.11 mmol) of $LiN(i-Pr)_2$ in an NMR tube and 0.5 mL of C_6D_6 was added after the tube was cooled in ice water. The tube was then sealed and allowed to warm slowly to room temperature. ^{1}H and 13c NMR spectra showed that 5b and **la** formed in a ratio of about 1:2. IH NMR (C_6D_6) for 5b: 2.47 (s, br, 9 H, NCH₃) 2.40 (s, br, 6 H, CH₃NCH₂CH₂), 2.24 (s, br, 6 H, CH₃NCH₂CH₂), 1.04 (d, 12 H, (CH₃)₂CNH); ¹³C NMR (C₆D₆) 51.13 (CH₃NCH₂CH₂), 50.45 (CH₃NCH₂CH₂), 35.68 (CH₃NCH₂CH₂), 34.38 $(NCH(CH_3)_2)$, 14.52 (NCH(CH_3)₂); ²⁹Si NMR (C₆D₆) -30.59.

1-Bis(trimethylsilyl)amino-azasilatrane, 6a. To 25 mL of a THF solution of 0.50 g (2.4 mmol) of **7a** was slowly added 20 mL of a THF solution of 0.48 g (2.7 mmol) of lithium bis(trimethylsilyl)amide at -50 °C. The solution was stirred and was allowed to warm to room temperature. After 1 h, **7a** was totally consumed according to the 1H NMR spectrum. THF was removed under

vacuum and the residue was extracted with 4 x 10 mL of benzene. Evaporation of the volatiles under vacuum and slow distillation at $60^{\circ}/10 \times 10^{-7}$ ³ mmHg afforded the colorless liquid product in 50% yield. ¹H NMR (C_6D_6) 2.81 (t, 2 H, SiNCH₂CH₂, ³J_{HCCH} = 5.4 Hz), 2.69 (m, 4 H, HNCH₂CH₂), 2.15 $(m, 4 H, HNCH_2CH_2)$, 1.97 (t, 2 H, SiNCH₂CH₂, ³J_{HCCH} = 5.4 Hz), 0.82 (b, 3 H, HN); 0.31 (s, 9 H, SiMe₃), 0.28 (s, 9 H, SiMe₃). ¹³C NMR (C₆D₆ at 20 °C) 56.17 (IC, HNCH2CH2N), 53.59 **(2C,** NHCH2CH2N), 42.33 (IC, HNCH2CH2), 38.46 $(2C, HNCH_2CH_2), 2.92 (3C, Si(CH_3)_3), 2.82 (3C, Si(CH_3)_3);$ ¹³C NMR (toluene d_8 , at 111 °C), 56.94 (1C, HNCH₂CH₂N), 54.50 (2C, HNCH₂CH₂N), 42.95 (1C, $HNCH_2CH_2N$), 38.99 (2C, $HNCH_2CH_2$), 2.79 (3C, Si(CH₃)₃), 2.55 (3C, Si(CH₃)₃); 29 Si NMR (C₆D₆) -65.29 (SiN₄), 2.06 (Si(CH₃)₃), -2.24 (Si(CH₃)₃). MS (70 ev, EI) *m/z* (relative intensity, proposed ion) 331.2 (13.8, M+), 286.1 (3.8, M+- CH2CHNCH2), 316.2 (37.9, M+-Me), 301.2 (63.2, M+-2Me), 171.1 (3.4, M+- $N(Si(Me_3)_2)$; HRMS for $M^+(C_{12}H_{33}N_5Si_3)$ calcd: 331.20438, found: 331.20398.

l-Bis-(trimethylsilyl)amino-N^^'-triinethyl-azasilatrane, 6b. Compound **7b** $(0.28 \text{ g}, 1.1 \text{ mmol})$ was mixed with $0.19 \text{ g} (1.1 \text{ mmol})$ of $\text{LiN}(\text{SiM} \text{e}_3)_2$ in 25 mL of toluene and the mixture was refluxed for 24 h. After filtration and removal of solvent under vacuum, the clear liquid product was obtained in 88% yield by distillation at 65 °C/12 x 10⁻³ mmHg. ¹H NMR (C₆D₆) 2.71 (s, 9 H, 3NCH₃), 2.65 (t, 6 H, CH₃NCH₂CH₂, ³J_{HCCH} = 5.8 Hz), 2.18 (t, 6 H, $CH_3NCH_2CH_2$), 0.25 (s, 18 H, Si(CH₃)₃); ¹H (CDCl₃ at 20^o), 2.81 (t, 6 H, $CH_3NCH_2CH_2$, ${}^3J_{HCCH}$ = 5.8 Hz), 2.64 (t, 6 H, $CH_3NCH_2CH_2$), 2.50 (s, 9 H, $3NCH_3$), 0.14 (s, 18 H, Si(CH₃)₃); ¹H (CDCl₃ at -55°), 2.78 (t, 6 H, $CH_3NCH_2CH_2$), 2.49 (s, 9 H, N(CH₃)₃), 0.10 (s, 18 H, Si(CH₃)₃); ¹³C NMR

 (C_6D_6) 48.06 $(CH_3NCH_2CH_2)$, 47.12 $(CH_3NCH_2CH_2)$, 38.27 (NCH₃), 5.76 (Si(CH3)3); **13C** NMR (CDCI3 at 20 **"C),** 47.68 (CH3NCH2CH2), 47.58 $(CH_3NCH_2CH_2)$, 38.02 (CH₃N), 5.55 (SiMe₃); ¹³C NMR (CDCl₃ at -41 °C), 47.41 $(CH_3NCH_2CH_2)$, 46.99 $(CH_3NCH_2CH_2)$, 37.82 (CH_3N) , 5.39 $(Si(CH_3)_3)$; 29Si NMR (C_6D_6) -71.17 (SiNCH₃), 1.82 (SiMe₃); ²⁹Si NMR (CDCl₃) -69.59 (SiNCH₃), 2.5 (Si(CH₃)₃). LRMS (70 ev, EI) (relative intensity, proposed ion), 373.3 (20.3, M+), 358.2 **(34.9,** M+-CH3), 329.2 (18.5), 275.1 (100.0), 246.1 (41), **218.1 (62.2),** 213.2 (31.2, M⁺-N(TMS)₂); HRMS for M⁺ (C₁₅N₅H₃₉Si₃) calcd: 373.25133, found: 373.25106.

1-Methylazasilatrane, 8a. To 50 mL of a THF solution of 0.20 g (0.91 mmol) of **7a** was slowly added 0.76 mL of a 1.4 M MeLi solution at -50 °C. The solution was allowed to warm to room temperature and was stirred for an additional 1 h. THF was removed under vacuum and the residue was extracted with 3 x 15 mL portions of pentane. The removal of pentane under vacuum gave solid **8a** (0.023 g) which was purified by sublimation at 60 $\textdegree C/10 \times 10^{-3}$ mmHg to give a 26% yield of **8a.** The spectroscopic data are consistent with the literature values. 4

Attempted synthesis of l-methyl-N^^'-trimethylazasilatrane, 8b.

Method A: To 15 mL toluene solution of **7b** (0.12 g, 0.48 mmol) was added 0.5 mL of 1.5 M LiMe (0.75 mmol, 56% excess) solution in diethyl ether. The solution was refluxed for 24 h. A ¹H NMR spectrum of the reaction mixture showed the presence of **7b** only. Another 0.5 mL of LiMe was added and the solution was further refluxed for 24 h. After filtration and removal of toluene

under vacuum, only 7**b** (~0.05 g) was recovered by sublimation at 85 °C/5.1 x 10-3 mmHg.

Method B: The aforementioned procedure was repeated in the presence of 2 molar equivalents of TMEDA (tetramethylethylenediamine) and the solution was refluxed for 24 h. The ¹H NMR spectrum revealed **7b** only along with TMEDA.

1-re-Butylazasilatrane, 9a. To 0.205 g (0.993 mmol) of **7a** in 50 mL of toluene was added dropwise 10 mL of a 0.201 M n -BuLi solution (2.01 mmol) in toluene at -90 °C. The solution was allowed to warm to room temperature and was stirred for 1/2 h. The solvent was evaporated under vacuum and the residue was extracted with 3 x 20 mL portions of pentane. Removal of pentane under vacuum and sublimation of the solid residue at 56 $^{\circ}$ C/11 x 10⁻³ mmHg gave 0.032 g of **9a** in 14% yield. ¹H NMR (C_6D_6) 2.74 (dt, 6 H, $HNCH_2CH_2N$, ${}^{3}J_{HNCH} = 2.7$ Hz, ${}^{3}J_{HCCH} = 5.85$ Hz), 2.15 (t, 6 H, $HNCH_2CH_2$), 1.49 (b, 6 H *-CH*₂CH₂CH₂), 1.02 (t, 3 H, CH₃); ¹³C (C₆D₆) 50.54 (HNCH₂CH₂N), 37.15 (HNCH₂CH₂), 29.59, 28.06, 20.74, 14.47 (CH₂CH₂CH₂CH₂CH₃); ²⁹Si NMR (C_6D_6) -65.34. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 228.1 $(0.43, M⁺)$, 171.1 (100.0, M⁺ - Bu), 57.0 (16.11, Bu⁺), 149 (22.5), 116.1 (87.2); HRMS for M^+ - Bu ($C_6H_{15}N_4Si$) Calcd: 171.10660, found: 171.10661.

l-w-Butyl-N^,N*-trimethylazasilatrane, 9b.

Method A: To 0.5 mL of a C_6D_6 solution of 20 mg (0.080 mmol) of **7b** cooled to 7 °C was added 0.04 mL of 2.01 M n-BuLi solution in hexane (0.080 mmol). The 1 H NMR spectrum taken after 10 min revealed that the reaction was complete and that \sim 5% of 1b, \sim 95% of 9b and \sim 5% of 1-butene had formed. The ¹H NMR chemical shifts of 1-butene compared favorably with those from commercially available 1-butene.

Method B: Compound **7b** (0.14 g, 0.56 mmol) was dissolved in 20 mL of toluene and 0.3 mL of a 2.01 M n-BuLi solution (0.6 mmol) was added. The solution was stirred and heated at 60 °C for 1/2 h. The toluene was removed under vacuum and the residue was extracted with 4 x 15 mL portions of pentane. Removal of pentane in vacuum afforded crystalline **9b** in 95% yield.

Characterization of **9b**: ¹H NMR (C_6D_6) 2.61 (s, 9 H, NCH₃), 2.57 (t, 6 H, $CH_3NCH_2CH_2$, ${}^3J_{HCCH}$ = 5.7 Hz), 2.27 (t, 6 H, CH₃NCH₂CH₂), 1.6 (m, 6 H, $CH_2CH_2CH_2$), 0.97 (t, 3 H, ³J_{HCCH} = 2.6 Hz); ¹³C (C₆D₆) 50.43 (CH₃NCH₂CH₂), 49.28 (CH3NCH2CH2), 39.08 (NCH3), 28.24, 27.92, 16.95, 14.40 (- $CH_2CH_2CH_2CH_3$); ²⁹Si NMR (C₆D₆) -40.85. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 270.2 (0.5, M+), 213.2 (100.0, M+ - Bu), 156.1 (20.1); HRMS for M^+ - Bu (C₉H₂₁N₄Si) calcd: 213.15350, found: 213.15378.

1-s-Butylazasilatrane, 10a. To 25 mL of a toluene solution containing 0.12 g (0.58 mmol) of **7a** at -75° was slowly added 3.5 mL of a 0.2 M solution of s-BuLi $(0.7 \text{ mmol}, 20\% \text{ excess})$. The solution was stirred for 15 min and a ¹H NMR spectrum of an aliquot showed a low conversion of **7a** into **10a** as well as a small amount of **la.** The ratio of **10a:la:7a** was estimated to be about 5:1:5 according to ¹H NMR integration. Addition of another 3.5 mL of the s-BuLi (0.7 mmol) caused the starting material to disappear but it also destroyed a considerable portion of the products. Removal of toluene under vacuum and

extraction with pentane (3 x 15 mL portions) followed by evaporation of the volatiles gave a semisolid residue containing a small amount of compound whose ${}^{1}H$ and ${}^{13}C$ NMR spectra were consistent with the substitution product **10a** based on the favorable comparison of these spectra with those of **9a** (estimated conversion to $10a < 10\%$). ¹H NMR (C₆D₆) 2.76 (t, 6 H, ³J_{HCCH} = 5.9 Hz, HNCH₂CH₂), 2.07 (t, 6 H, HNCH₂CH₂); ¹³C NMR (C₆D₆) 50.56 $(HNCH_2CH_2)$, 37.27 ($HNCH_2CH_2$).

Attempted synthesis of 1-s-butyl-N_.N', N'-trimethylazasilatrane, 10b.

Method A: Compound **7b** (21 mg, 0.085 mmol) was dissolved in 0.5 mL of C_6D_6 and 0.065 mL of 1.3 M s-BuLi (0.085 mmol) was added at room temperature. The solution turned slightly cloudy and the H NMR spectrum 10 min later revealed the exclusive formation of **lb,** 1-butene (-80%) and (Z, E-2-butene (-20%) in a ratio of 3:2 of Z to E.

Method B: To 0.5 mL of C_6D_6 solution containing 20 mg of **7b** (0.080) mmol) was added 20 mg of TMEDA (0.17 mmol) followed by 0.06 mL 1.3 M *s-*BuLi solution. The ¹H NMR spectra taken 1 h, 2 h, 1 d later showed only a small amount of **lb** and unreacted **7b.** Addition of 0.15 mL 1.3 M s-BuLi solution led to formation of an additional species, whose 1H and 13C NMR spectra were consistent with those of the presumed $10b$. ¹H NMR (C_6D_6) 2.46 $(t, 6 H, \frac{3J}{\text{HCCH}} = 5.7 \text{ Hz}, \text{SiNCH}_2\text{CH}_2$), 2.34 (t, 6 H, SiNCH₂CH₂), 2.39 (s, 9 H, NCH₃); ¹³C NMR (C₆D₆) 51.09 (SiNCH₂CH₂), 50.16 (SiNCH₂CH₂).

1-f-Butylazasilatrane, 11a. Following the procedure for **10a** except using *t-*BuLi, it was found that **11a** and **la** formed in a ratio of approximately 5:1.

Addition of excess t -BuLi in order to consume all the starting material, still led to only a low conversion to product. A small amount of compound **11a** was identified by ${}^{1}H$ NMR in the reaction residue after removing the volatiles. $1H NMR (C_6D_6)$ 2.76 (dt, $3J_{HCNH} = 2.7 Hz$, $3J_{HCCH} = 5.7 Hz$, $HNCH_2CH_2$), 2.09 (t, 6 H, HNCH₂CH₂), 1.02 (s, 9 H, (CH₃)₃C); ¹³C NMR (C₆D₆) 50.57 $(HNCH_2CH_2)$, 37.65 ($HNCH_2CH_2$), 24.20 (C(CH_3)₃), 10.72 (C(CH_3)₃).

Attempted synthesis of l-#-butyl-N,N',N"-trimethylazasilatrane, lib. ^A series of ambient temperature ¹H NMR spectra of $7b$ (20 mg, 0.080 mmol) in 0.5 mL of C_6D_6 with 0.05 mL of t-BuLi solution in pentane (1.7 M, 0.085 mmol) taken over a period of 24 h showed that **7b** slowly reacted with *t*-BuLi, giving exclusively **1b** and iso-butene. ¹H NMR (C_6D_6) 1.59 (s, CH₃). In the presence of TMEDA, the conversion of **7b** into **lb** did not occur at a measurable rate at room temperature, and required heating to 65 °C for completion in 3 h.

l-Phenyl-azasilatrane, 12a. This compound was reported **earlier^** by a superior route and its crystal structure has been determined.¹² The following route is described insofar as it reflects the chemistry of **7a.** To 0.13 g (0.62 mmol) of **7a** in 50 mL of toluene was slowly added 3.8 mL 0.24 M PhLi at \sim 10 °C. The solution was allowed to warm up to room temperature. A ¹H NMR spectrum of an aliquot showed low conversion of **7a** into **12a** as well as a substantial amount of 7a. Addition of excess PhLi in order to consume all the starting material, also led to a low conversion to product. After filtration and removal of solvent, a muddy solid resulted which contained some of the product. ¹H NMR (C₆D₆) 2.74 (dt, 6 H, HNC H_2 CH, ³J_{HNCH} = 2.4 Hz, ³J_{HCCH}

= 5.7 Hz), 2.15 (t, 6 H, HNCH₂CH₂); ¹³C NMR (C₆D₆) 51.12 (HNCH₂CH₂N), 37.16 (HNCH2CH2). LRMS (70 ev, El) *mlz* (relative intensity, proposed ion) 248.3 (0.1, M+), 171.16 (100.0, M+-Ph).

l-Phenyl-N^ESr**^'-trimethylazasûatrane, 12b.**

Method A: To 0.23 g (0.93 minol) of **7b** in 5 mL of toluene was added 0.70 mL of a 1.5 M (1.1 mmol) ether/cyclohexane solution of PhLi. The reaction mixture was refluxed for 0.5 h. After filtration followed by removal of the solvent under vacuum, **12b** was sublimed in 96% yield. M.p. 60-62 °C. NMR (CeDe) 8.06 (dd, 2 H, o-H, **3Jhh** = 7.8 Hz, **5Jhh** = 1.2 Hz), 7.38 (t, 2 H, *m-*H), 7.27 (t, 1 H, p-H), 2.64 (t, 6 H, NCH₂CH₂, 3 J_{HCCH} = 5.7 Hz), 2.54 (s, 9 H, NCH₃), 2.26 (t, 6 H, NCH₂CH₂); ¹³C NMR (C₆D₆) 136.60, 129.00, 127.81, 127.44 (C_6H_5) , 50.51 $(CH_3NCH_2CH_2N)$, 50.45, $(CH_3NCH_2CH_2)$, 38.08 (CH_3N) ; ²⁹Si (C_6D_6) -44.41. LRMS (70 ev, EI) m/z (relative intensity, proposed ion) 290.2 (30.1, M+), 213.2 (100.0, M+ - Ph), 246 (37.1), 234.1 (50.2), 191 (33.8); HRMS for M^+ (C₁₅H₂₆N₄Si) calcd: 290.19268; found: 290.191868. Anal, calcd for $C_{15}H_{26}N_4Si: C, 62.21; H, 8.97; N, 19.31; found: C, 61.99, H, 9.20, N, 19.38.$

Method B: To 0.5 mL of a C_6D_6 solution of 20 mg (0.08 mmol) of 7b was slowly added 0.06 mL (0.09 mmol) of a 1.5 M PhLi solution (ether/cyclohexane) cooled to 10 °C. ¹H and ¹³C NMR spectra of the solution showed the formation of **12b** and **lb** in a molar ratio of approximately 90:5 plus a small amount of biphenyl, whose ^{1}H and ^{13}C NMR peaks compared favorably with a commercially available sample. Its identity was further verified by LRMS $(m/z: 154)$ by subliming it at room temperature/15 x 10⁻³

mmHg from the residue left after evaporation of a scaled-up reaction mixture.

Method C: To 0.5 mL of a C_6D_6 solution of 20 mg (0.080 mmol) of **7b** in an NMR tube was quickly added 0.15 mL of a 1.5 M (2.3 mmol) PhLi solution (ether/cyclohexane) at room temperature. The mixture was shaken vigorously. Ten min later a ¹H NMR spectrum of the solution showed exclusive conversion of **7b** to **12b.**

l-Perfluorophenylazasiiatrane, 13a.

Method A: C_6BrF_5 (0.13 g, 0.52 mmol) was dissolved in 18 mL of pentane and the solution was cooled to -50 °C. n -BuLi (0.26 mL, 0.52 mmol) in hexane was added and the mixture was stirred for 30 min. A precooled (-50 °C) toluene solution (15 mL) containig 0.084 g (0.41 mmol) of **7a** was added dropwise. After stirring at -50 $^{\circ}$ C for 1 h, the mixture was allowed to warm slowly to room temperature and then filtered. Removal of the solvents under vacuum followed by sublimation afforded crystalline product in 43% yield. M.p. 102-104°. ¹H NMR (C₆D₆) 2.66 (t, 6 H, ³J_{HCCH} = 5.7 Hz, SiNCH₂CH₂), 2.01 (t, 6 H, SiHNCH₂CH₂), 0.91 (b, 3 H, NH); ¹³C NMR (C₆D₆) 50.76 (HNCH₂CH₂N), 36.79 (HNCH₂CH₂). The complicated pattern of the C₆F₅ carbons caused by fluorine couplings provided barely detectable resonances. ²⁹Si NMR (C₆D₆) -84.51; ¹⁹F NMR (C₆D₆) -125.71 (dd, 2 F, o-F, ³J_{FF} = 27.4 Hz, 4 JFF = 9.0 Hz) -157.3 (t, 1 F, p-F, 3 JFF = 21.5 Hz), -162.26 (m, 2 F, m-F). MS (70 ev, EI) *mlz* (relative intensity, proposed ion) 338.1 (3.4, M+), 171.1 (3.5, M+ - C_6F_5 , 240.0 (33.2), 225.0 (17.3), 200.0 (16.6), 168.0 (83.3).

Method B: To 0.5 mL of a toluene solution of 10 mg (0.048 mmol) of **7a** was added 0.1 mL of 0.5 M (0.05 mmol) of $MgBrC_6F_5^{10}$ solution in ether at room temperature. The reaction was immediately monitored by $19F$ NMR spectroscopy and C_6F_5H was observed to have formed nearly quantitatively, along with a trace amount of **13a.** l^F NMR: -138.23 (t), -153.68 (t), -161.183 (t). These spectral data were consistent with those of intentionally hydrolyzed $MgBrC_6F_5.$

1-Perfluorophenyl-N,N',N'-trimethylazasilatrane, 13b. To 0.64 g (2.6 mmol) of compound **7b** in 25 mL of toluene was added 2.8 mmol of $MgBrC_6F_5$ as a mixture prepared by mixing 0.70 g of C_6BrF_5 with 0.070 g of Mg in 10 mL of ether at room temperature. The reaction mixture was stirred for 1/2 h. After filtration, all the volatiles were removed under vacuum over a period of 5 h. By sublimation at 50°/5 x 10-3 mmHg, a crystalline solid, identified as pure product **13b** was obtained in 14% yield. M.p., 105-106 °C. ¹H NMR (C₆D₆) 2.53 $(t, 6$ H, 3 **J**_{HCCH} = 5.7 Hz, CH₃NCH₂CH₂), 2.36 (s, 9 H, NCH₃), 1.96 (t, 6 H, $CH_3NCH_2CH_2$); ¹³C NMR (C₆D₆) 50.18 (CH₃NCH₂CH₂), 48.47 (CH₃NCH₂CH₂), 38.20 (CH₃N); ²⁹Si NMR (C₆D₆) (temperature) -69.94 (50 °C), -70.94 (20 °C), -71.76 (10 °C); ¹⁹F NMR (C₆D₆) -126.46 (dd, 2 F, o -F, $3J_{FF} = 24.6$ Hz, $4J_{FF} = 9.3$ Hz), -156.32 (t, 1 F, p-F, 3 J_{FF} = 19.8 Hz), -162.96 (m, 2 F, m-F). LRMS (70 ev, EI) *miz* (relative intensity, proposed ion), 380.0 (100,0, M+), 336.0 (56.0, M+ - CHeN), 324.2 (25.3), 295.3 (18.8), 281.3 (12.1), 213 (8.3, M+ - **CeFg);** HRMS for M+ $(C_{15}H_{21}N_4F_5Si)$: calcd, 380.14557, found, 380.14740.

l-Fluoro-N^N*^'-trimethylazasilatrane, 14b, and the tetrafluorobenzyne insertion product 15. To 25 mL of a pentane solution of $C_6F_5Br(0.433 g, 1.79$ mmol) at -50 °C was added 0.9 mL of a 2.01 M (1.89 mmol) hexane solution of n-BuLi. After stirring at -50 °C for 3 h, 0.42 g (1.7 mmol) of **7b** in 8 mL of toluene was slowly added. The mixture was stirred at \sim -50 °C for an additional 0.5 h and then allowed to warm to room temperature whereupon the mixture turned brownish red. After filtration and washing with 3 x 15 mL portions of toluene a ¹H NMR spectrum of the filtrate revealed three major products **13b, 14b** and **15** in a ratio of approximately 1:2:1. After removal of the solvent under vacuum, **14b** sublimed first at 35 °C/15 x 10-3 mmHg in about 90% purity. Repeated sublimation under these conditions gave pure **14b** in 28% yield. M.p., 120-122 *°C.* The residual mixture was then sublimed at 55 °C to remove **13b** together with unseparated **14b** and a small amount of **15.** After removal of **13b** and **14b** was complete (as shown by the NMR spectra of the sublimed solid) a 21% yield of **15** was readily sublimed at 110°/15 x 10-3 mmHg as a white crystalline solid. M.p., 168-169 °C. Compound **15** dissolved well in THF and toluene but did not dissolve in water. Crystals of **14b** and **15** suitable for X-ray studies were grown by sublimation at 60 °C in an unevacuated tube sealed under nitrogen and at 5 x 10^{-2} mmHg, respectively.

Characterization for **14b**: ¹H NMR (C₆D₆) 2.97 (s, 9 H, NCH₃), 2.60 (dt, 6 H, $CH_3NCH_2CH_2$, ${}^3J_{HCCH}$ = 5.7 Hz, ${}^4J_{FSiCH}$ = 1.2 Hz), 2.03 (t, 6 H, $CH_3NCH_2CH_2$); ¹³C NMR (C₆D₆) 48.32 (s, CH₃NCH₂CH₂), 47.05 (d, $CH_3NCH_2CH_2N$, ${}^3J_{CF} = 1.5$ Hz), 37.28 (d, ${}^3J_{CF} = 8.0$ Hz, CH_3N); ¹⁹F NMR (C_6D_6) -136.19; ²⁹Si NMR (C_6D_6) -99.69 (d, ¹J_{FSi} = 191.8 Hz). LRMS (70 ev, EI) $m/z =$ (relative intensity, proposed ion) 232.2 (100, M⁺), 188.1 (86.1, M⁺ - $CH_3NCH_2CH_2$; HRMS for M⁺ (C₉H₂₁FN₄Si). Calcd: 232.15195, found: 232.15201. Anal. calcd for $C_9H_{21}FN_4Si$: C, 46.55, H, 9.05, N, 24.14; found: C, 46.74; H, 9.17; N, 24.37.

Characterization for $15:$ ¹H NMR (toluene-D₈) 2.60 (d, 3 H, $CH_2NCH_3C_6F_4Si$, ${}^5J_{FCH}$ = 1.05 Hz), 2.56 (b, 3 H, NCH₂CH₂NCH₃Si), 2.14 (s, 3) H, NCH₂CH₂NCH₃Si), 2.78 (m, 1 H), 2.60 (m, 1 H), 2.59 (m, 1 H), 2.57 (m, 1 H), 2.44 (m, 1 H), 2.10 (m, IH), 2.08 (m, 1 H), 1.79 (m, H), 1.73 (m, 2 H), 1.70(m, 1 H), 1.51(dt, 1 H); ¹³C NMR (C₆D₆) 57.58, 55.87, 51.87, 51.32, 48.46, 48.33, 42.36 $(d, \frac{3}{4}J_{\rm{FC}} = 7.5 \text{ Hz})$, 39.26 (m), 38.52; ¹³C NMR (toluene-d₈) 151.87 (m), 150.42 (m), 149.59 (m), 148.75 (m), 147.46 (m), 146.25 (m), 142.68 (m), 140.60 (m), 139.12 (m), 135.6 (m), 133.71 (m), 57.69, 56.9, 51.00, 51.44,49.59,48.46, 42.30 (d, 3 J_{CF} = 7.5 Hz), 39.24 (m), 138.52 (s); ¹³C NMR (toluene-d₈, 100 °C), 57.12, 56.04, 52.14, 51.60, 50.16, 48.94, 42.35 (d, 3**Jfc** = 7.5 Hz), 38.83 (m), 38.27; 29Si NMR (toluene-ds) (temperature, °C) -66.06 (80), -68.47 (50), -70.30 (20), -72.55 **(10),** -73.24 (-20), -74.39 (-30), -74.91 (-40), -76.40 (-50), -77.87 (-60), -77.88 (-67.5); 29Si NMR (solid state, 20 °C) -62.6. ¹⁹F NMR (C₆D₆) -128.38 (b, 1 F), -129.83 (dd, 3 J_{FF} = 27.7 Hz, 1 F, 4 J_{FF} = 12.4 Hz), -146.01 (t, 1 F, 3 J_{FF} = 15.2 Hz), -154.63 (t, 1 F , ${}^{3}J_{FF} = 21.2$ Hz), -155.18 (t, 1 F , ${}^{3}J_{FF} = 18.3$ Hz), -158.48 (t, 1 F , ${}^{3}J_{FF} = 24.6$), -161.98 (b, 2 F). ¹⁹F NMR (toluene-d₈, -70 °C) -126.81 (d, 1 F, ³J_{FF} = 27.4), -129.03 (d, 1 F, 24.3 Hz), -130.00 (dd, $3J_{FF} = 27.4$ Hz, $4J_{FF} = 9.0$ Hz, 1 F), -146.00 $(t, 1 \text{ F}, J = 22.9 \text{ Hz})$, -158.44 (t, $1 \text{ F}, 3J_{\text{FF}} = 21.2 \text{ Hz}$), -155.07 (t, $1 \text{ F}, 3J_{\text{FF}} = 19.9$ Hz), -154.26 (t, 1 F, ³J_{FF} = 21.2 Hz), -161.13 (m, 1 F), -162.06 (m, 1 F); LRMS (70 ev, EI) *miz* (relative intensity, proposed ion), 528.1 (34.1, M+), 484.1 (95.1, M+- C_2H_6N , 292.1 (45), 361.1 (15.2, M⁺-C₆F₅), 206.1 (100.0), 144.2 (89.2), 99.1 (85.2), 69.0 (40). HRMS for M^+ (C₂₁H₂₁F₉N₄Si) calcd: 528.13918, found 528.14039. Anal, for $C_{21}H_{21}F_9N_4Si$, calcd: C, 47.73; H, 3.98; N, 10.60; found, C, 48.19; H, 3.87; N, 10.87.

1-Benzyl-N_JN'₋V'-trimethylazasilatrane 26. Compound 7b (0.20 g, 0.82 mmol) was mixed with 0.14 g (0.90 mmol) of MgBrCH₂C₆H₅ in 20 mL of toluene and the mixture was refluxed for 0.5 h. After filtration and removal of the solvent, the residue was extracted with 3 x 15 mL portions of pentane. Evaporating the pentane under vacuum gave as a liquid in 84% yield. ¹H NMR (CeDe) 7.45 (d, 2 H, 2**Jhh** = 7.2 Hz, m-H), 7.23 (t, 2 H, 2**Jhh** = 7.8 Hz, 0- H), 7.09 (t, 1 H, p-H), 2.51 (t, 6 H, 3 J_{HCCH} = 5.4 Hz, CH₃NCH₂CH₂), 2.46 (s, 9 H, NCH₃), 2.28 (t, 6 H, CH₃NCH₂CH₂), 2.14 (s, 2 H, $CH_2C_6H_5$); ¹³C NMR (C₆D₆) 143.06, 130.17, 128.15, 123.95 (C6H₅), 50.73 (CH₃NCH₂CH₂N), 49.72 $(CH_3NCH_2CH_2N)$, 36.63 (NCH₃), 24.47 (PhCH₂); ²⁹Si NMR (C₆D₆) -37.7.

1-Methoxyazasilatrane 29a. NaOCH₃ (0.15 g, 2.8 mmol) was mixed with 0.10 g (0.48 mmol) of **7a** in 35 mL of THF and the solution was refluxed for 84 h. THF was removed by distillation at atmospheric pressure and the residue was extracted with 3 x 15 mL of pentane. Removal of pentane under vacuum afforded presumably pure solid 28 in 85% yield. 1 H NMR (C₆D₆) 3.14 (s, 3 H, OCH₃), 2.75 (t, 6 H, HNCH₂CH₂, ³J_{HCCH} = 5.7 Hz), 2.06 (t, 6 H, HNCH₂CH₂); ¹H NMR (CDCl₃) 3.30 (s, 3 H, OCH₃), 2.99 (t, 6 H, HNC H_2CH_2 , ³J_{HCCH} = 5.7 Hz), 2.63 (t, 6 H, HNCH₂CH₂); ¹³C NMR (CDCl₃) 57.70 (OCH₃), 50.51

 $(HNCH_2CH_2)$, 37.02 (HNCH₂CH₂); ²⁹Si NMR (CDCl₃) -82.49. HRMS for M⁺ (C7Hi8N40Si) calcd: 202.12499, found; 202.12507.

l-Methoxy-N^^'-trimethylazasilatrane 29b. Compound **7b** (0.13 g, 0.52 mmol) was mixed with 0.12 g (2.0 mmol) of NaOCH₃ in 5 mL of THF. After the addition of 20 mL of toluene, the solution was refluxed for \sim 14 h, but only about 30% of the starting material **7b** was converted into **29.** Refluxing for another 58 h caused the reaction to reach completion. The solvents were removed under vacuum and the solid residue was extracted with 4 x 10 mL of pentane. Removal of pentane under vacuum followed by sublimation at 55 °C/15 x 10⁻³ mmHg gave the crystalline product in 85.3% yield. ¹H NMR (C_6D_6) 3.76 (s, 3 H, OCH₃), 2.95 (s, 9 H, NCH₃), 2.67 (t, 6 H, CH₃NCH₂CH₂, 3 J_{HCCH} = 5.7 Hz), 2.05 (t, 6 H, CH₃NCH₂CH₂); ¹³C NMR (C₆D₆) 51.35 (OCH₃), 48.25 (CH₃NCH₂CH₂), 47.80 (CH₃NCH₂CH₂), 38.72 (NCH₃); ²⁹Si (C₆D₆) -88.55. LRMS (70 ev, EI), m/z (proposed ion, relative intensity) 244.2 (M⁺, 45.1), 213.2 $(M^{+}$ -OCH₃, 47.0), 200.1 $(M^{+}$ -N(CH₃)₂, 96.7), 188.1 $(M^{+}$ -NC₃H₆, 100.0), 159.1 $(M^{+}$ - $C_4H_9N_2$, 45.31), 145.1 (59.3), 131.1 (38.5); HRMS for M⁺ (C₁₀H₂₄ON₄Si) calcd: 244.17194, found: 244.17180.

1-Ethoxy-N,N',N"-trimethylazasilatrane 30b. This compound was synthesized earlier by another route.⁴ Compound $7b$ $(0.20 g, 0.80 mmol)$ was mixed with 15 g (2.2 mmol) of NaOEt in 15 mL of THF and 20 mL of toluene. The solution was refluxed for 136 h. The solvents were removed under vacuum and the solid residue was extracted with 4x8 mL portions of benzene. Removal of the benzene under vacuum afforded crude product in

81% yield. ¹H NMR (C_6D_6) 4.04 (q, 4 H, OCH_2CH_3 , ³J_{HCCH} = 6.9 Hz), 2.94 (s, 9 H, NCH₃), 2.66 (t, 6 H, CH₃NCH₂CH₂, ³J_{HCCH} = 5.7 Hz), 2.05 (t, 6 H, $CH_3NCH_2CH_2$), 1.42 (t, 6 H, OCH₂CH₃); ¹³C NMR (C₆D₆), 57.19 (OCH₂CH₃), $48.43 \text{ (CH}_3\text{NCH}_2\text{CH}_2)$, $48.01 \text{ (CH}_3\text{NCH}_2\text{CH}_2)$, $38.85 \text{ (NCH}_3)$, $18.87 \text{ (OCH}_2\text{CH}_3)$; $29Si NMR (C_6D_6) -88.29 (lit.4 -87.7 in CCl₃D).$

l-Isopropoxy-N^',N"-trimethylazasilatrane 31b. To a mixture of **7b** (0.18 g, 0.72 mmol) and $LiOCH(CH_3)_2$ (0.12 g, 1.8 mmol) was added 15 mL of THF. The solution was refluxed for 26 h whereupon the 1H NMR spectrum of the reaction mixture indicated the absence of acetone or **7b.** THF was removed under vacuum and the residue was extracted with 4 x 10 mL of pentane. After evaporation under vacuum, the clear liquid product was obtained in 80% yield. ¹H NMR (C₆D₆) 4.57 (h, 1 H, -CH(CH₃)₂, ³J_{HCCH} = 6.0 Hz), 2.83 (s, 9 H, NCH₃), 2.56 (t, 6 H, CH₃NC H_2 CH₂, ³J_{HCCH} = 5.7 Hz), 2.10 (t, 6 H, CH₃NCH₂CH₂), 1.47 (d, 6 H, OCH(CH₃)₂); ¹³C NMR (C₆D₆) 64.53 (CH(CH₃)₃), 49.87 (CH₃NCH₂CH₂), 49.60 (CH₃NCH₂CH₂), 38.60 (CH₃NCH₂CH₂), 26.35 $(CH(CH_3)_2)$; ²⁹Si NMR (C_6D_6) -74.28.

l-Tertiarybutoxy-N^^'-trimethylazasilatrane 32b. Compound **7b** (0.11 g, 0.44 mmol) was added to $LiOC(CH_3)_3$ (0.036 g, 0.45 mmol) in 12 mL of THF and the mixture was refluxed for 44 h. THF was removed under vacuum and the residue was extracted with 3 x 10 mL portions of pentane. After evaporation under vacuum, the product remained as a liquid in 86% yield. ¹H NMR (C_6D_6) 2.72 (s, 9 H, NCH₃), 2.58 (t, 6 H, CH₃NCH₂CH₂, ³J_{HCCH} = 5.7 Hz), 2.22 (t, 6 H, CH₃NCH₂CH₂), 1.51 (s, 9 H, C(CH₃)₃); ¹³C NMR (C₆D₆) 70.95

(0C(CH3)3), 50.77 (CH3NCH2CH2), 50.73 (CH3NCH2CH2). 37.84 (NCH3), 32.32 $(C(CH_3)_3)$; ²⁹Si NMR (C_6D_6) -68.5.

Reaction of ClSi(NMe₂)₃ with LiNMe₂. LiNMe₂ (10 mg, 0.2 mmol) was dissolved in 0.5 mL of THF-D₈ in a septum-sealed NMR tube. ¹H NMR (THF- D_8) 2.66; ¹³C NMR (THF-D₈) 47.67. According to the ¹H and ¹³C NMR spectra, no reaction occurred at room temperature after the addition of 40 mg (0.2 mmol) of ClSi(NMe₂)₃. After the solution was warmed at 80 °C for 2 h almost quantitative conversion to $Si(NMe₂)₄$ was observed. ¹H NMR (THF-D₈) for $Si(NMe₂)₄: 2.45$ (s, 24 H); ¹³C NMR (THF-D₈): 38.34.

Reaction of ClSi(NMe₂)₃ with LiNEt₂. LiNEt₂ (10 mg, 0.13 mmol) was dissolved in 0.5 mL of THF-D₈ in a septum-sealed NMR tube. 1 H NMR (THF-D₈): 2.83 (2, 4 H, CH₂, ³J_{HCCH} = 7.2 Hz), 1.04 (t, 6 H, CH₃); ¹³C NMR (THF-Dg): 50.36 **(CH2),** 18.56 (CH3). After ClSi**(NMe2)3** (25 mg, 0.13 mmol) was added, no reaction was observed. After heating at 80 °C for 2 h, \sim 40% of the $CISi(NMe₂)$ ₃ was converted into $Si(NMe₂)₃NEt₂$. The reaction was complete after another 7 h at 80 °C. ¹H NMR to Si(NMe₂)₃NEt₂ (THF-D₈) 2.82 (q, 4 H, CH_2 , ${}^{3}J_{\text{HCCH}}$ = 6.9 Hz), 2.46 (s, 18 H, N(CH₃)₂), 1.00 (t, 6 H, CH₂CH₃); ¹³C NMR 39.80 (NCH₂CH₃), 38.54 (N(CH₃)₂), 15.18 (CH₂CH₃).

Reaction of ClSi(NMe₂)₃ with *i***-Pr₂NLi.** *i*-Pr₂NLi (15 mg, 0.14 mmol) was dissolved in 0.5 mL of THF-dg. ¹H NMR (THF-dg): 3.02 (h, 2 H, CH(CH₃)₂, 3 J_{HCCH} = 6.3 Hz), 0.98 (d, 6 H, CH(CH₃)₂); ¹³C NMR (THF-d₈) 52.21 $(NCH(CH_3)_2)$, 27.77 $(NCH(CH_3)_2)$. When ClSi(NMe₂)₃ (30 mg, 0.15 mmol) was added, no reaction was observed. After heating at 80 °C for -20 h, all the starting material was consumed according to the ¹³C NMR spectrum which was quite complicated. However, peaks consistent with the formation of a small amount of HSi(NMe₂)₃ were detected. ¹³C NMR (THF- d_8) for $HSi(NMe₂)₃$: 36.97. This value compared favorably with that of a commercially available sample.

Reaction of ClSi(NMe₂)₃ with *n***-BuLi.** ClSi(NMe₂)₃ (40 mg, 0.2 mmol) was added to 0.5 mL of a toluene- d_8 solution of *n*-BuLi (0.25 mmol) in a septumsealed NMR tube. The ¹H NMR spectrum showed that no reaction occurred at room temperature and so the solution was heated at 90 °C for \sim 24 h whereupon the conversion into the substitution product was complete. ${}^{1}H$ NMR ($C_6D_5CD_3$) for n-BuSi(NMe₂)₃: 2.48 (18 H, N(CH₃)₂), 1.36 (b, 6 H, (CH₂)₃), 0.93 (3 H, CH₃); ¹³C NMR: 38.00 (N(CH₃)₂), 27.49, 26.89, 14.29, 11.53 (n-Bu).

Reaction of ClSi(NMe₂)₃ with s-BuLi. ClSi(NMe₂)₃ (40 mg, 0.2 mmol) was added to 0.5 mL of a toluene-d₈ solution of s-BuLi (0.22 mmol) in a septumsealed NMR tube. A small amount of $HSi(NMe₂)₃$ formed after 1 h at room temperature according to the 1H NMR spectrum. Because no further reaction was observed at room temperature, the mixture was heated at 90 °C for \sim 24 h, after which the ¹H NMR spectrum displayed peaks consistent with the formation of s -BuSi(NMe₂)₃ and HSi(NMe₂)₃ in an approximate ratio of 3:2. ¹H NMR data (CD₃C₆D₅) for s-BuLi(NMe₂)₃: 2.49 (18 H, N(CH₃)₂), 1.3, 0.95. ¹³C NMR (CD₃C₆D₅): 38.22, 27.30, 25.03, 13.77, 13.45.

Reaction of ClSi(NMe₂)₃ with *t***-BuLi.** ClSi(NMe₂)₃ (40 mg, 0.2 mmol) was added to 0.5 mL of a toluene-dg solution of t -BuLi (0.23 mmol) in a septumsealed NMR tube. No reaction was observed for 1 h at room temperature according to its ¹H NMR spectrum. The solution was heated at 90 °C for \sim 24 h at which time the ¹H NMR spectrum revealed that t -BuSi(NMe₂)₃ and HSi(NMe₂)₃ formed in a ratio estimated to be 1:2. ¹H NMR for *t*-BuSi(NMe₂)₃: 2.49 (18 H, N(CH₃)₂), 1.2 (9 H, C(CH₃)₃); ¹³C NMR: 38.23, 26.99, 17.9.

Single-crystal X-ray structural determination of 14b and 15. Colorless crystals of **14b** and **15,** grown by slow sublimation, were attached to a glass fiber and mounted on the Siemens P4RA diffractometer for data collection at -50 ± 1 °C. The cell constants for the data collection were determined from a list of reflections found by a rotation photograph. Crystal data and experimental conditions for data collection, solution and structure refinement are listed in Table I.

Lorentz and polarization corrections were applied for both compounds as was a nonlinear correction based on the decay in the standard reflections. A series of azimuthal reflections was collected for **14b** and **15,** and a semiempirical absorption correction based on the azimuthal scans was applied to the data for both compounds.

For 14b, the centric space group $P2_{1/m}$ was determined from intensity **statistics and systematic absences. The structure was solved by direct methods using the SHELXTL-Plus^3 and SHELXTL**-9314 **programs.** All **nonhydrogen atoms were located directly from the E-map.** All **non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atom positions were generated with ideal geometries and were refined as riding, isotropic atoms.**

The C_3 structure of 14b is disordered across a crystallographic mirror. The $P2_{1/m}$ space group requires that the contents of the asymmetric unit have mirror symmetry with another unit. Thus both left and right handed "twists" of the molecule are found on the same site. The only non-hydrogen atoms that are affected are CI and C3. All other atoms are sufficiently modeled with one atom. CI is refined as a half-atom; the other half is produced by symmetry. C3 and its disordered component, C_3 ', are refined as half-atoms on general sites. The necessity of splitting these sites also requires dual, riding-atom assignments for the hydrogens on C4.

For 15, the centrosymmetric space group \overline{PI} was chosen based on the lack of systematic absences and the intensity statistics. However, no suitable solution was derived from direct methods. A correct direct-method solution was found in the noncentrosymmetric space group Pi which has enantiomers related by a center of inversion. The positions of all atoms found in one enantiomer were shifted relative to the inversion center to yield the \overline{PI} molecular structure. Again, all non-hydrogen atoms were refined with anisotropic thermal parameters. Methylene hydrogen atoms were refined as riding atoms with C-H distances of 0.96 Â and with individual isotropic thermal parameters. Methyl hydrogen atoms were refined initially as rigid bodies to find the best torsion angles. During the final set of leastsquares procedures, these were not refined positionally, but were refined with individual group isotropic thermal parameters.

	14 b	15
empirical formula	$C_{14}H_{36}FN_{4}Si$	$C_{21}H_{21}F_9N_4Si$
fw	307.56	528.5
color; habit	colorless, plate	colorless, plate
crystal size (mm)	$0.50 \times 0.35 \times 0.09$	$0.22 \times 0.16 \times 0.09$
crystal system	monoclinic	triclinic
space group	$P2_1/m$	P1
$a(\AA)$	$7.352(1)$ Å	$8.586(2)$ Å
$b(\AA)$	$12.361(2)$ Å	$10.215(2)$ Å
$c(\AA)$	$7.512(1)$ Å	$13.745(3)$ Å
α (deg)	90.0°	95.62(2)°
β (deg)	119.30(1)°	102.25(2)°
γ (deg)	90.0°	107.74(2)°
volume (\AA)	595.3(2)	1104.8(4)
Z	$\overline{2}$	$\overline{2}$
d_{caled} (g/cm ³)	1.716	1.589
abs coeff (cm^{-1})	1.828	1.819
F(000)	595.34	540
diffractometer	Siemens P4RA	Siemens P4RA
radiation	$CuKa (\lambda = 1.54178 \text{ Å})$	CuK α (λ = 1.54178 Å)
temperature(K)	223(2)	223
monochromator	graphite crystal	graphite crystal
2θ scan range	6.76 to 56.80	4.0 to 115.0

Table I. Crystallographic Data for **14b** and **15.**

163

Table I. Continued.

scan type	ω -20	$20 - 0$
scan speed (deg/min)	8.08-23.44	6.01-23.44
scan range (ω)	1.0° plus α_1 , α_2 separation	1.00° plus K α -separation
collected reflcns	1659	3210
independent reflecns	841	2969
R_{init} (%)	3.40	0.85
observed reflcns, n _{obs}	805 (I $\geq 2\sigma$ (I))	2679 (F $\geq 4.0\sigma$ (F))
hydrogen atoms	Riding model fixed	Riding model, fixed
	isotropic U	isotropic U
weighting scheme, w^{-1}	$[\sigma^2(F_0^2)+(0.04*p)^2+0.37*p]^a$ $\sigma^2(F)+0.0003F^2$	
no. of variable, n _{var}	102	332
goodness-of-fit	1.130, 1.113	2.10
largest and mean Δ/σ	0.001, 0.000	0.001, 0.000
data-to-parameter ratio	7.9:1	8.1:1
largest peak $(e \cdot A^{-3})$	0.225	0.24
largest hole $(e \cdot A^{-3})$	-0.220	-0.21
$R(\%)^b$	3.48	3.21
$R_{\mu\nu}$ (%) ^c		4.66
R^2 _w $(\%)^d$	9.26	
GOFe	1.130	2.10

 ${}^{\circ}P = (Max(F_0^2, 0) + 2*F_0^2)/3.$ ${}^{\circ}R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|.$ ${}^{\circ}R_w = [\Sigma w(|F_0| - \Sigma w)]$ $|F_c|)^{2}/\Sigma w(F_0)^{2}]^{1/2}. \ \ \mathrm{dR}_w{}^2 = [\Sigma [W(F_0{}^2\text{-}F_c{}^2)^2]/\Sigma [W(F_0{}^2)^2]]^{0.5}. \ \ \mathrm{eGOF} = [\Sigma s(|F_o|\text{-}F_c{}^2)]^{1/2}.$ $|F_c|$)²/(n_{obs}-n_{var})]^{1/2}.

Atom	X	y.	z	U(eq)	
Si	5200(1)	2500	739(1)	23(1)	
F	2696(2)	2500	$-929(2)$	36(1)	
N(1)	8302(4)	2500	2788(3)	28(1)	
N(2)	6026(4)	2500	$-1060(3)$	34(1)	
N(3)	5167(3)	1297(2)	1896(3)	42(1)	
C(1)	9378 (6)	2014(4)	1773(6)	33(1)	
C(2)	8219(5)	2500	$-446(4)$	43(1)	
C(3)	8556(7)	1885(4)	4568 (6)	41(1)	
C(3'a)	8911(7)	1335(4)	3312(7)	41(1)	
C(4)	7078 (4)	862(2)	3544(4)	57(1)	
C(5)	4734 (5)	2500	$-3242(4)$	42(1)	
C(6)	3426(4)	599(2)	1371(4)	48(1)	

Table II. Atomic Coordinates (x 10^) and Equivalent Isotropic Displacement Parameters $(\AA^2 \times 10^3)$ for **14b.**

Equivalent isotropic U defined as one third of the trace of the orthogonalized Uij tensor.

 $\ddot{}$

 \sim \sim

distances				
$Si-F$	1.643(2)	$Si-N(1)$	2.034(2)	
$Si-N(3)$	1.728(2)	$F-Si-N(3a)$	95.58(7)	
$Si-N(2)$	1.732(2)	$F-Si-N(3)$	95.58(7)	
$Si-N(3a)$	1.728(2)	$F-Si-N(2)$	95.47(10)	
angles				
$F-Si-N(1)$	179.64 (9)	$Si-N(3a)-C(6a)$	127.7(2)	
$Si-N(3)-C(6)$	127.7(2)	$Si-N(3a)-C(4a)$	120.7(2)	
$Si-N(3)-C(4)$	120.2(2)	$C(3)-N(1)-C(3a)$	111.1(3)	
$Si-N(2)-C(5)$	127.0(2)	$C(3a)$ -N(1)-C(1)	111.1(3)	
$Si-N(2)-C(2)$	121.0(2)	$C(1)-N(1)-C(3)$	113.6(3)	

Table III. Selected Bond Distances (À) and Angles (deg) for 14b.

aNumbers in parentheses are estimated standard deviations in the least significant digits.

 \sim \sim

Table IV. Atomic Coordinates (x 10⁴) and Equivalent Isotropic Displacement Coefficients (Â2 **X 103) for 15.**

*Equivalent isotropic U defined as one third of the trace of the orthogonalized

Uij tensor.

Product 15.				
distances				
$Si-N(1)$	2.246(2)	$Si-C(16)$	1.924(2)	
$Si-N(3)$	1.731(2)	$C(21)$ -Si-N(1)	171.4(1)	
$Si-N(4)$	1.734(2)	$C(16)$ -Si-N(1)	87.7(1)	
$Si-C(21)$	1.996(2)	$N(4)$ -Si- $N(1)$	81.2(1)	
angles				
$Si-C(21)$	1.996(2)	$C(8)-N(4)-Si$	122.6(2)	
$Si-C(16)$	1.924(2)	$C(9)-N(4)-C(8)$	110.3(2)	
$N(3)$ -Si- $N(1)$	82.1(1)	$C(5)-N(3)-C(6)$	108.8(2)	
$C(8)-N(4)-Si$	122.6(2)	$C(6)-N(3)-Si$	124.3(2)	
$C(11)$ -N(2)-C(2)	113.0(2)	$Si-N(3)-C(5)$	122.5(2)	
$C(3)-N(2)-C(2)$	112.4(2)	$Si-C(16)-C(11)$	123.11(2)	
$C(11)-N(2)-C(3)$	116.8(2)	$C(1)-N(1)-C(4)$	112.3(2)	
$C(9)-N(4)-Si$	127.0(1)	$C(1)-N(1)-C(7)$	107.0(2)	
		$C(7)-N(1)-C(4)$	110.2(2)	

Table V. Selected Bond Distances (À) and Angles (deg) for the Insertion

^aNumbers in parentheses are estimated standard deviations in the least significant digits.

All the X-ray data collections and the structure solutions were carried out at the Iowa State Molecular Structure Laboratory. All calculations were performed on a digital Equipment Corp, Micro VAXII computer. Positional parameters and selected bond distances and angles are listed in Tables II and III for **14b,** and Tables IV and V for **15,** respectively.

RESULTS AND DISCUSSION

Synthesis of la and lb. Although the synthesis of **la** via reaction 1 had been reported to proceed in quantitative yield more than 15 years ago, 3 the 51-55 °C melting point of this compound (and presumably its purity) was considerably

lower than that of the product we had obtained $(77-79 \text{ °C})$ in the same reaction carried out in the presence of a catalytic amount of Me₃SiCl or $(NH_4)_2SO_4.^4$ It was our belief that the yield we reported for the latter reaction (72-84%) and for reaction 2 (54%) could be further improved by the use of a solvent to avoid the polymer formation which was observed to dominate when these reactions were carried out over long periods of time. A further impetus for improvement of these yields was the fact that **la** and **lb** are the precursors for starting materials **7a** and **7b,** respectively, used in the present study. Indeed we discovered that the use of refluxing toluene raised our earlier yields of **la** and **lb** to 90 and 93%, respectively, and the melting point of **la** obtained by this method (78-80 °C) was comparable with the previously reported value.4 Because no catalysts were used in the present syntheses, the reactions took

longer than those we described earlier. On the other hand, polymerization was minimized.

Synthesis of 7a and 7b. Because reactions of ClSi(NMe₂)₃ with tren or Me₃tren gave polymeric **mixtures,**4 an alternate route was required. By analogy to the synthesis of 1-chloro-silatrane **17** via the oxidation of 1-hydrosilatrane 16 with halogenated hydrocarbons (reaction 3),¹⁵ we had earlier reported reaction 4 in the presence of metal catalysts for the preparation of **7a.**4 However, the isolated yield in this reaction was only 30% and substantial

insoluble by-product formation was also observed. Heating the reaction mixture only resulted in darkening owing presumably to decomposition. Here we report that although reaction 4 takes longer without catalyst (several days *versus* ten minutes) the product yield is doubled (60-70%) and it is NMR spectroscopically pure and it is white.
Efforts to speed up the synthesis of **7a** by using other chlorinating agents such as N-chlorosuccinimide,⁵ Ph₃CCl and Cl₃CCCl₃ (which were previously used in reaction 3)15 proved to be unsuccessful in that the separation of **7a** from the corresponding reduction product was tedious owing to similar solubilities. Chlorinating agents commonly used in organic chemistry such as Me02SCl and CI2SO gave intractable solids in the presence of **la.** Although the transformation in reaction 3 had been reported to occur in 80% yield in the presence of Me3SiCl and **quinoline**,15a this approach is unsuccessful for converting **la** to **7a** owing to trimethylsilylation of the equatorial nitrogens as had been reported by us **earlier.4,16**

Attempts to carry out reaction 4 with **lb** to prepare **7b** resulted in the formation less than 5% yield of the desired product and large quantities of an intractable red solid at room temperature after only 3 h. Using no catalyst in reaction 4 at room temperature eventually causes **lb** to be consumed, but the yield of desired product is negligible. At room temperature or at 65 °C in toluene, the reaction mixture of **lb** with CI3CCCI3 was observed to turn dark brown over 10 h, but no detectable product was formed. When this reaction was carried out in refluxing toluene, impure (brown) **7b** was realized in 40% yield. The most successful approach to colorless crystalline **7b** appears to be

reaction **5** which was developed in our laboratories by a previous **coworker. 5** Side reactions leading to intractable products are minimized by keeping the reaction mixture at -10 *°C* or below even during solvent evaporation. Trace amounts of succinimide by-product left in the product after toluene extraction of the residue remaining after evaporation of the reaction mixture, were removed by sublimation, affording yields of crystalline **7b** ranging from 50- 87% in this somewhat erratic reaction.

Syntheses of 2a 4a, 6a and 2b 6b and the attempts to synthesize 5a. The **1** amino compounds **2a** and **3b** are formed in high yields according to reactions

(6) (7) NaNH2. NH3(1)^ NH2 ^ **NaNHj.THPO \ I yV R = Me, 87% 2b* —N«=:::y**

6 and 7. Both compounds are sublimable for further purification purposes. It is important to use only a stoichiometric amount of $NANH₂$ in reaction 6, since excess of this reagent leads to darkening the reaction mixture and considerable lowering of the yield. Substituting ether or THF as a solvent for liquid **NH3** in this reaction was unsuccessful, probably owing to the poor solubility of the NaNHg. LiNH2 in liquid **NH3** or THF also failed to react with **7a** and the use of a blue solution of Na in liquid **NH3** was only partially successful in that $(H_2NCH_2CH_2)$ ₃N, a reduction product, was formed along with **2a** in an approximate ratio of **2:3.**

Compound **2a** is a solid at room temperature, but it is a volatile liquid at 42 °C. Thus purification can be achieved by sublimation or distillation. At 200 °C it decomposes with the release of **NH3.** It is soluble in common organic solvents and it is stable to solvolysis by EtOH in C_6D_6 at room temperature over a period of 2 h.

In contrast to **7a, 7b** is relatively unreactive to NaNH2 in liquid **NH3** and starting material was recovered quantitatively after 2.5 hours. This may be due to the poor solubility of **7b** in liquid ammonia. Although conversion of **7b** to **2b** does occur with Na in liquid **NH3** over a period of 30 days, the reduction product **1b** is also formed (ratio of $2b:1b = 5:1$) and no (HMeNCH₂CH₂)₃N is observed. Reaction **7** takes about six days.

Whereas reaction 8 proceeds in reasonable yield, a side reaction involving lithiation of an equatorial NH proton(s) increasingly dominates in

reactions 9 and 10. If an intermediate such as **18** is formed, concomitant liberation of the corresponding amine **HNR2** is expected. Indeed, the only

species observed in solution is i-Pr2NH in reaction 10. Some support for **18** is gained from our previous isolation of stable 19.1® Also formed in reactions 8- 10 is a precipitate which may be a polymeric form of 20 created *via* concerted LiCl elimination to form unstable **18,** or by nucleophilic attack of the anion of **18** on **7a.** Although sila-imines are known, the Si=N-R skeleton tends to be close to linear $(177.8^{\circ}(2)$ in $t-Bu_2Si=N-t-Bu$ and $161.51^{\circ}(5)$ in THF \cdot Me₂Si=NSi(*t*-Bu)₃).¹⁷ In any case, it is clear that deprotonation of **7a** becomes more competitive with nucleophilic chloride displacement from this molecule caused by these amides whose basicities lie in the order $-N(SiMe₃)₂$ \langle -NMe₂ \langle -NEt₂ \leq -N-*i*-Pr₂.¹⁸ Interestingly, when reaction 9 was run at room temperature, ¹H NMR spectroscopic monitoring revealed almost quantitative HNEt₂ formation and no 4a, in analogy to reaction 10 wherein HN-i-Pr2 was quantitatively observed to formed. It would also appear that a nucleophilicity order based on steric factors is not of overriding importance here since the yields of **3a** and **6a** are comparable.

Compounds **3b 6b** were made according to reactions 12-15, respectively. In view of the lack of equatorial NH protons in **7b,** deprotonation/lithiation cannot be the cause of the poor yields of **3b** and **4b,** nor can it be origin of the mediocre conversion of **7b** to **5b.** These results and the seemingly oddly high yield of **6b** will be addressed in a later section.

Synthesis of 8a, 9a,b and 12a,b and attempted synthesis of 8b, 10a,b and lla,b. Reactions 16-20 summarize our efforts to synthesize **8a-12a** and reactions 20- 24 do the same for 8b-12b. The basicity order¹⁹ t -Bu⁻ > s -Bu⁻ > n -Bu⁻ > Me⁻ >

$$
LiMe, THF, RT
$$
\n
$$
26\% 8a
$$
\n(16)

$$
\frac{\sqrt{\frac{n-\text{Bul.i, MePh, -90 °C}}{14\% 9a}}}{\sqrt{\frac{s-\text{Bul.i, THF, -75 °C}}{14\% 9a}}}} \qquad \frac{R}{N - \frac{\text{Siu}}{N}} \qquad \frac{H}{N} \qquad (17)
$$

$$
N-SiuN N Sn\n
$$
N N
$$
ⁿ
\n
$$
N
$$
ⁿ
$$

$$
t-BuLi, THF, -75 \,^{\circ}\text{C} \longrightarrow (19)
$$

$$
\begin{array}{c}\n\text{Liph, THF, -50 °C} \\
\hline\n\text{<10\% 12a}\n\end{array}
$$
\n(20)

$$
LiMe, MePh
$$
\n
$$
0\% 8b
$$
\n(21)

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$

$$
Me
$$
 <math display="</math>

$$
7b \bigvee_{i-\text{Bulic}, C_0D_6, RT} \underbrace{N-Si \underbrace{m \cdot N}_{N} \times \underbrace{N}_{N}}_{N}
$$
 (23)

$$
\begin{array}{|c|c|}\n\hline\n0\% & 11b \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{|c|c|}\n\hline\n\end{array}
$$

$$
rac{\text{LIPn, WCPn1} \cdot \text{MCPn1} \cdot \text{M
$$

Ph~ partially accounts for the general decrease in yield from **8a-11a.**

It is remarkable that reaction 22 leads to a **95%** yield of **9b** while the presumably the smaller Me" in reaction 21 gives only unreacted starting material even after 24 hours of refluxing the reaction mixture in the presence of $Me_2NCH_2CH_2NMe_2$ (TMEDA) as a lithium complexing agent. Reaction 21 starkly contrasts reaction 16 in which a 26% yield of its analogue **8a** was isolated despite competitive deprotonation/lithiation. We tentatively attribute this result to insufficient ionization of the oligomeric LiMe in toluene compared with THF. It should be noted that **8b** is a known compound, and was made by reacting $MeSi(NMe_2)_3$ with $(HMeNCH_2CH_2)_3N.^4$ The apparently anomalous lack of formation of **10b** and **lib** in reactions 22 and 23 are addressed in a later section.

Synthesis of 13a, 13b, 14b and 15. These compounds were synthesized according to reaction 26-28. Whereas reaction 26 gives a 43% yield of product,

$$
7a \quad \frac{\text{BrC}_6F_5, n-\text{Bul}}{\text{pentane, PhMe}, -50 \text{ °C}, 43\%} \quad 13a \tag{26}
$$

$$
BrMgC_6F_5, \text{ether} \longrightarrow 13b
$$
 (27)
7b (27)

$$
b\n\left\{\n\begin{array}{l}\n\text{BrC}_{6}F_5, n-\text{Bul.i} \\
\text{PhMe}, -50 \text{ °C} \rightarrow \text{RT}\n\end{array}\n\right.\n\quad\n\text{13b} + 14b + 15
$$
\n(28)

a similar reaction carried out with $BrMgC_6F_5$ in ether at room temperature provided an almost quantitative converison of the Grignard reagent to HC_6F_5 , presumably from metallation of the NH hydrogens of **7a.** From the analogous reaction with **7b** (reaction **27)** a low yield of pure **13b** was obtained after sublimation of the residue left after solvent removal from the reaction mixture.

After removal of solvent from the mixture remaining upon completion of reaction 28, sublimation gave first a mixture which contained aobut 90% pure **14b.** Repeated sublimation of this fraction at 35 °C/15 x 10-3 mmHg gave pure **14b** in 28% yield. Sublimation of the remaining reaction residue at 55 °C removed **13b** together with unseparated **14b** plus a small amount of **15.** After **13b and 14b** were removed (as shown by ¹H NMR spectroscopy) 15 was sublimed at 110 °C in 21% yield.

Hydride transfer reactions. Except for the transformation of **7b** to **6b** by $LiN(SiMe₃)₂$ in reaction 15, the analogous reactions 12-14 produce mediocre yields of the corresponding amides **3b 5b.** By monitoring reactions 12-14 with IH NMR spectroscopy, it was observed that the ratios of the amidated to hydrogenated product **(lb)** were approximately 5:1, 4:1 and 1:2, respectively. In fact, **lb** was also isolated and unambiguously identified from reactions 12 and 13. Since reaction 14 was carried out in the deuterated solvent C_6D_6 , the only plausible source of hydrogen in **lb** formed in reactions 12-14 is the amide reagent. It is suggested that the formation of **lb** in these reactions comes about via a hydride transfer pathway involving intermediate 21 (or a structurally distorted conformer thereof) which would be increasingly favored over nucleophilic attack by the nitrogen (e.g., 22) as the amide group

increases in size. Four lines of evidence make this suggestion plausible. 1) The ¹³C NMR chemical shifts of one byproduct are compared favorably with those of the expected imine elimination product $Me_2HCN=CMe_2^{20}$ in reaction 14. 2) The addition of the Li⁺ complexing agent TMEDA to these reactions substantially suppressed the rates of hydride transfer and nucleophilic substitution, presumably because formation of the six and four-centered intermediates 21 and 22, respectively, would be inhibited. 3) Reaction 15 gives

a high yield of amide substitution product **6b** owing to the lack of a proton on the carbon alpha to the amide nitrogen, thus requiring a sterically less favored seven-membered ring if an intermediate analogous to 21 is indeed required. 4) Whereas the Si-H bond in four-coordinate silanes is well known to react with amines in amide-catalyzed reactions to form Si**-NR2** bonds,20 **la** and **1b** do not undergo such reactions,⁴ presumably because the amide concentration and hence the concentration of intermediate 21 is very low. Silanes are sterically more favored than silatrane systems to undergo direct nucleophilic attack, with no necessity to expose an electrophilic site by ring formation as in **21.** That such a site can indeed arise in a silatrane species was shown in the structure determination of 23 wherein the Me₂N-Si distance of 2.95 Â in the rather distorted structure indicates a weak N-Si

interaction.²² The trans-annular Si \leftarrow N interaction is also weak since its distance of 2.42 Â is considerably longer than in 24 (2.19 Â).l2

In reactions 18 and 19 consumption of the starting material **7 a** was incomplete. A ratio of about 1:5 hydride transfer product **la** to substitution product **(10a** and **11a)** was observed in each case, however. Thus hydride transfer product la is not observed with the less sterically hindered LiR reactants LiMe and n -BuLi (reactions 16 and 17, respectively). With the more sterically hindered substrate 7b, however, hydride transfer product lb (along with 1-butene) is already observed with n -BuLi (reaction 22) and the ratio of 1b to substitution product rises from approximately 1:20 in this reaction to 1:0 with the more sterically hindered s-BuLi and t -BuLi in reactions 23 and 24, respectively. It is interesting to compare the ratios of the three olefins produced from s-BuLi in reactions 18 (1-butene: Z -2-butene: E -2-butene \approx 1:1:1) and 23 (10:1.5:1, respectively). These data are consistent with an intermediate of type 25 which in the case of s-BuLi can form two diastereomers, namely, $25a$ (R' = Et, R" = H), and $25b$ (R' = R" = Me). In the presence of the more sterically hindered 7b, s-BuLi apparently favors the

formation of 25a ($R = Me$) at the expense of 25b($R = Me$) because of steric interactions interactions of the R" = Me and R = Me groups. The 1.5:1 Z to E ratio of 2-butenes in reaction 23 also becomes understandable if the sixmembered ring in 25b adopts a conformation approximating the one shown

above. Such a conformation for $25b$ ($R = Me$) dominates if the methyl group on the carbon beta to the lithium were induced to be equatorial (owing to steric interactions with a methyl group on the silatrane cage if it were axial) and if the methyl on the carbon alpha to the lithium were axial (because of a more favored interaction of the hydrogen on this methyl group with the axial lone pair on chlorine). Dreiding models show that a ca. 90° Cl-Si---H angle distorts the six-membered ring to favor the cis relationship of the methyl group as shown rather than a trans diequatorial structure. As hydride transfer and Li-C cleavage progresses, Z-2-butene would be expected to form.

Although no hydride transfer product **la** stemming from an aromatic hydrogen in LiPh was detected in reaction 20, a small amount of $1\mathbf{b}$ ($\sim 5\%$) is observed in reaction 25 when it is carried out at room temperature or at -45 °C. This observation suggests that benzyne is eliminated from an intermediate of type $25 (R = Me)$. Also detected in this reaction is a very small amount of biphenyl which could arise from the attack of phenyl anion on benzyne to form biphenyl anion, followed by proton abstraction from the solvent toluene to form $LiCH₂Ph$. Consistent with the desirability of a proton on the carbon beta to the lithium in the LiR reagent is the lack of **lb** as a product in reaction 29 and the high yield of **26.** It may be noted that all of the rates of these reactions are significantly inhibited in the presence of TMEDA.

That conversion of a nucleophilic substitution product to a hydride substitution product is not occurring in these reactions is supported by the lack of detection of 1b by ¹H NMR spectroscopy after refluxing a toluene solution of **9b** for **2** hours.

In contrast to the reactions of **7a** and **7b** with LiR, the analogue **17** reacts with n -BuLi to cleave an Si-O bond rather than the Si-Cl linkage, as is the case with tetracoordinate silicon **species.**23 In view of the preceding discussion, it is reasonable to suggest that since oxygen is more electronegative than chlorine, an intermediate of type **27** which weakens the LiO-Si bond while simultaneously opening a sixth coordination site on

silicon for nucleophilic attack of $\overline{CH_2R}$. In similar reactions with tetracoordinate $CISi(OR)$ ₃ compounds, any such weakening of the LiO-Si bond would be dominated by weakening of the Si-Cl link of the linear 3-center *4* electron MO system in 28.

We have not observed hydride transfer products in reactions 30-34. This

result is attributable to the great strength of the Si-0 bond and the minimal steric requirement of the oxygen in -OR. While the poorer complexing ability of sodium with the chlorine substituent might be blamed for the lack of hydride transfer product in reactions 27-29, reactions 33 and 34 would appear to be ideally set up for producing **lb** with accompanying elimination of acetone. The fact that these products are not observed supports the dominant role of Si-0 bond formation. As perhaps expected, hydride transfer readily occurs from LiAlH₄ in reaction 35. Not surprisingly, **7a** in the presence of

$$
7\mathbf{b} \quad \frac{\text{LiAlH}_4, \text{THF}}{88\%} \quad \text{1b} \tag{35}
$$

 $LiAlH₄$ evolved hydrogen owing to the formation of aluminum bonds to the equatorial nitrogens.

Compared with **7a** and **7b,** the acyclic four-coordinate analogue $CISi(NMe₂)₃$ reacts more sluggishly with $LiNR₂$ and LiR , requiring higher temperatures and longer times (reactions 36-41). This observation

corroborates earlier work indicating the lower reactivity of four-coordinate silicon species compared with five-coordinate **analogues.24**

A fluoride transfer reaction. Our observation of a small amount of hydride transfer product **lb** when reaction 25 was carried out at low temperature

185

prompted us to repeat the reaction with LiC_6F_5 , since the Si-F bond strength exceeds that of the SiH bond by -214 **kJ/mol**.25 Indeed the dominant product in reaction 42 is the fluoride transfer species **14b.** By contrast, reaction 43

7b
$$
\frac{\text{BrC}_6F_5, n-\text{Bul.i}}{\text{PhMe, pentane, -50 °C}}
$$
 13b + 14b + 15 (42)
1 : 2 : 1

$$
7a \quad \frac{\text{BrC}_6F_5, n-\text{Bul}}{\text{PhMc}, \text{pentane}, -50\text{ °C}} \qquad 13a \tag{43}
$$

gives only the perfluorophenylated product **13a.** Reaction 42 also produces the tetrafluorobenzyne insertion product **15,** which is rather suprising because such a reaction might have been expected to occur more readily with sterically less hindered **14b.** It is also not obvious why no tetrafluorobenzyne insertion product is detected in reaction 43. That **15** can arise from benzyne insertion into **13b** was shown by reacting isolated **13b** with a solution in which tetrafluorobenzyne was generated. When reaction 42 was carried out in the presence of furan, the Diels-Alder adduct 33^{26} was detected by ¹H, ¹³C and ¹⁹F NMR spectroscopies in addition to **13b, 14b** and **15.** However, the percentage of **15** decreased somewhat. It is inconclusive whether any of the tetrafluorobenzyne moiety in **33** emanated from the fluoride transfer intermediate **34** rather than from warming the n -BuLi/BrC₆F₅ solution. Further support for an intermediate of the type **34** to account for the formation of **14b** comes from our failed attempts to fluorinate **7b** by exchange with LiF in refluxing THF. Thus it seems unlikely that **14b** arises from the

interaction of liberated LiF with unreacted starting material in reaction 42.

Tetrafluorobenzyne insertion could conceivably occur directly on **7 b** giving **35b,** followed by nucleophilic substitution to form **13b.** If this were the case, however, then the formation of some **36b** might be expected, but none

was detected. Even when excess **7b** was used in reaction 42, no **35b** was detected.

By using BrMgCgFs in reaction 44, only **13b** was observed to form. Since

$$
7\,\mathbf{b} \quad \frac{\text{BrMgC}_{6}\text{F}_5, \text{RT}}{\text{PhMe}, \text{Et}_2\text{O}, 14\%} \quad 13\,\mathbf{b} \tag{44}
$$

 $BrMgC_6F_5$ is stable up to 80 °C,²⁶ it is not surprising that the tetrafluorobenzyne product **15** is not seen in this reaction until it is heated above this temperature. Somewhat surprising, however, is the lack of fluoride transfer product. Perhaps the BrMg analogue of intermediate **34** is disfavored because the Mg-Cl bond is **58** kJ/mol weaker than the Li-Cl **link**,25 and because the bromine atom places greater steric demands on such an intermediate. Another possible source of tetrafluorobenzyne and **14b** is the

decomposition reaction 45. We did observe such a reaction as a minor pathway in the EI mass spectrum of **13b.** However, a toluene solution of **13b** is stable from room temperature to 100 °C.

Molecular structures of 14b and 15. It is interesting that the $N \rightarrow Si$ transannular bond length of 2.034 (2) Â in **14b** (Fig. 1) is shorter than that reported for 37 $(2.042 \cdot 1)$ \AA^{27} . On the other hand this link in 14b is longer than the 2.023 Å reported for 17.28 The Si-F bond in 14b $(1.643 \, (2)$ Å) is somewhat longer than that in 37 $(1.622 \cdot 1)$ \AA^{27} , which may be expected from

the greater donation of electron density from the transannular nitrogen in **14b**, as is suggested by its shorter $N \rightarrow S$ i transannular bond. The Si-F bond length in **14b** is comparable with the axial Si-F lengths in **41** (1.62 Â29), **42** $(1.621 (5)$ $\rm{\AA^{30}}$, $\rm{SiF_5}^ (1.646$ $\rm{\AA^{31}})$ and $\rm{PhSiF_4}^ (1.669 (3)$ $\rm{\AA^{32}})$.

Despite the expansion of one of the five-membered rings in **13b** by tetrafluorobenzyne insertion, the N-»Si transannular bond is preserved in **15** (Fig. 2). The length of this bond in azasilatranes such as **14b** (2.034 (2) Â, **38** (2.135 (2) Â3) and **39** (2.132 (4) Â12) is augmented by the introduction of the seven-membered ring in **15,** but is is shorter than that observed in **40** (2.775 (7) \AA ¹⁶) in which this interaction is stretched by steric interactions among the methyl groups. Even in the latter compound, however, the transannular interaction length is shorter than the sum of the van der Waals radii (3.65 **À33).**

Fig. 1. ORTEP drawing of **14b.** Ellipsoids are drawn at the 50% probability level.

Fig. 2. ORTEP drawing of **15.** Ellipsoids are drawn at the 50% probability level.

 $\ddot{}$

Fig. 3. ORTEP drawing of 15 showing the conformation of the axial C_6F_5 ring relative to the C_6F_4 moiety in the seven-membered ring.

 $\hat{\mathcal{A}}$

The steric hindrance introduced by the tetrafluorobenzyne group results in a noticeable reduction in the linearity of the axial framework observed in symmetrical atranes to 171.4° for the **Nax**-Si-C(21) bond angle in **15.** In spite of the distortion of the axis and the stretched transannular interaction in **15** in the solid state, the transannulated structure apparently remains intact in solution. This is indicated by the upfield 29Si NMR chemical shift observed in solution (-70.6 ppm) which is actually somewhat higher than that observed in the solid state (-62.8 ppm) suggesting the possibility of an even stronger transannular interaction in the solution state.

From the view of **15** shown in Fig. 3 it is seen that the plane of the axial C_6F_5 group almost bisects the angle formed by the two five-membered rings of the atrane cage and minimizes steric interactions of F(26) and the methyl groups containing $C(6)$ and $C(9)$ (Figure 2). This C_6F_5 conformation also minimizes steric hindrance between $F(22)$ and $F(15)$. The average of the sum of the angles around N(3) and N(4) in **15** is 355.6 and 359.9°, respectively, which is comparable with the value of 359.9° for the equatorial nitrogens in **14b.** By contrast, the sum of the angles around N(2) in **15** is 342.2° for this more pyramidal nitrogen. The larger sum of the C-N-C angles around the axial nitrogen **N(l)** in **14b** (335.8°) compared with the same nitrogen in **15** (329.5°) is somewhat surprising in view of the longer transannular bond in **15.**

Nmr spectral features. 29gi NMR chemical shifts are a reflection of the degree of transannular interaction in azasilatranes, and they generally move to lower field on stretching the transannular bond. 4 From Table VI it is seen

compound	\mathbf{Z}	δ^{29} Si	compound	\mathbf{Z}	δ^{29} Si
		(ppm)			(ppm)
14 b	F	-99.7	2a	NH ₂	-74.5
7a	Cl	-82.2	$\boldsymbol{\mathfrak{b}}$	NH ₂	-85.1
$\boldsymbol{\eta}$	Cl	-87.2	3a	NMe ₂	-72.6
29a	OMe	-82.5	3 _b	NMe ₂	-51.4
29b	OMe	-88.6	$\boldsymbol{\mathfrak{B}}$	$CH_2C_6H_5$	-37.7
30a	OEt	$-82.9b$	$\boldsymbol{\Phi}$	NEt ₂	-37.9
30 _b	OEt	-88.3	\bf{a}	i -Pr ₂ N	-30.6
31b	i -PrO	-74.3	6a	N(SiMe ₃) ₂	-65.3
32 _b	t -BuO	-68.5	\bf{a}	N(SiMe ₃) ₂	-71.2
12a	Ph	$-77.2c$	1a	H	-81.0
13a	C_6F_5	-84.2	1 _b	H	-62.4
12 _b	Ph	-44.4	8a	Me	-68.3
13 _b	C_6F_5	-69.9	\bf{a}	Me	$-70.8d$
15	C_6F_5	-70.6	9a	$n-Bu$	-65.3
			\bf{a}	$n-Bu$	-40.9

Table VI. Solution 29Si Chemical Shifts of Azasilatranes.^

^aAll chemical shifts are recorded in C_6D_6 except where indicated. ^bIn CDCl₃ (Ref. 4). $\frac{c}{n}$ CDCl₃ (Ref. 35). $\frac{d}{n}$ CDCl₃ (Ref. 36).

that electronegative apical Z groups such as halide and OR result in $\delta^{29}Si$ values in the **-80** to **-100** ppm range for azasilatranes of both types **A** and **B** ô29Si for **31b** falls about **15** ppm below its lower homologues **29b** and **30b,** and **32b** falls about **20** ppm lower, possibly owing to steric hindrance which stretches the transannular bond. Such steric congestion could also be operative in the **33** ppm shift to lower field from **12a** to **12b** and the **14** ppm shift in the same direction from 13a to 13b, although both δ^{29} Si values for these compounds are at higher field relative to their phenyl-substituted analogues **12a** and **12b,** respectively, owing to the more electronegative nature of the C_6F_5 group which strengthens the transannular interaction.

It is interesting that relatively small electronegative Z groups such as CI, OMe, NH2 and **CH3** cause upfield shifts from compounds of type **A** to their **B** analogues. This phenomenon may be associated with increased steric congestion in **B**-type compounds which stretches the Z-Si bond, thereby augmenting the $(\delta -)Z-Si(\delta +)$ bond polarity and hence strengthening the transannular $N\rightarrow Si$ interaction. The exception to this observation is $Z = H$ for which ô29Si seems anomalously upfield (by **19** ppm) for the **A**-type compound **la** compared with **lb.** A similar phenomenon was observed in our laboratories for cations **43 (-42.9** ppm) and **44 (-10.1** ppm) in which the shift

difference was even **larger,34** This was attributed to smaller orbital charge imbalance terms in the paramagnetic shielding equation leading to pronounced shielding and greater orbital charge balance for **43** compared with **44.** The same argument can be used to account for the greater shielding (by 19 ppm) of the 29Si nucleus in **la** over **lb.** It is remarkable that the solution ô29Si value for the tetrafluorobenzyne insertion product **15** (-70.6 ppm) is almost identical with that of its precursor **13b** (-69.9 ppm). This result is taken to suggest that the length and strength of the transannular bond in these two compounds is very similar in the solution state. However, it must be noted that the solid state 29Si NMR chemical shift for **15** (-62.8 ppm) indicates considerably weaker transannular bonding in the solid state. It is interesting that δ^{29} Si in solution progresses quite monotonically with increasing temperature from -77.9 ppm at -67.5 °C to -66.1 ppm at 80.0 °C (see Experimental). This result also supports our hypothesis that the $N\rightarrow Si$ transannular bond is strengthened by solvent forces.

It is also observed from the data in Table VI that R groups larger than H or Z groups of type NR_2 produce increasingly downfield shifts from A-type compounds to their B-type counterparts, again reflecting the greater weakening of the transannular bond owing to steric congestion. This is also seen in the 7 ppm shift to lower field from **4b** to **5b.** While the downfield shift from **4a** to **6a** is expected on steric grounds, the upfield shift from **4b** (or **5b)** to **6b** is not. The reason for this is not presently obvious. It may be associated with a dominance of an electronegative sigma bond behavior of the $(MegSi)₂N$ group owing to pi delocalization of the nitrogen lone pair into the silicon orbitals of the Me₃Si groups which is accentuated by sterically induced stretching of the $(MegSi)_{2}N-Si$ bond.

The strength of the $(MegSi)₂N-Si$ axial link in sterically less congested 6a is apparently sufficient to prevent rotation of this bond at room temperature according to its ¹H and ¹³C NMR spectra, whereas free rotation of this bond at this temperature is observed for **6b**. Thus **6a** displays two sets of ¹H and two sets of ¹³C peaks for the SiNCH₂, N(CH₂)₃ and N(SiMe₃)₂ protons and carbons, respectively. Also observed are two ^{29}Si resonances for the $N(SiMe₃)₂$ silicons. These data are consistent with the $Si₂NSiN₃$ configuration shown below for $6a$ in which the Me₃Si environments are different. This configuration also accounts for the appearance of the ${}^{1}H$ NMR

spectrum of the cage $CH₂$ protons, which consists of two virtual triplets representing the AA'XX' spectra of the CH_2CH_2 protons of the unique bridge. In addition there are two complicated by symmetrical multiplets of twice the intensity representing the ABXY patterns of the protons in the two remaining identical CH_2CH_2 bridges. If configuration 6a' were to be favored

Fig. 4. IH NMR spectrum for the methylene groups of 6a.

58

for this framework, the MegSi environments would be identical. An advantage of the former structure shown for 6a is that, according to Dreiding models, a staggered conformation for the Me groups is permitted by the staggering of the three of the methyls with the hydrogens on the equatorial methyls. These models also show that structure 6a' would tend to force the two sets of silyl methyl groups to be eclipsed. A second advantage of the structure shown for 6a is that unlike 6a', the unhybridized p-orbital lone pair on the axial nitrogen is staggered with respect to the equatorial Si-N bonds, and may therefore delocalize lone pair density more effectively into empty orbitals (d and or σ^*) of the central silicon. The robustness of the pi bonding in 6a is revealed in its EI mass spectrum in which the base peak still retains this substituent, in contrast to dialkylaminoazasilatranes in this study for which the base peak contains only a cage fragment. Further evidence for the rigidity toward rotation of the axial substituent of 6a is our failure to observe coalescence of the ¹³C NMR peaks even at 110 °C in toluene- d_8 . By contrast, free rotation was observed in the ¹H and ¹³C NMR spectra of **6b** down to -40 °C in toluene-dg. Interestingly, **6b** also displays an EI MS base peak containing an axial substituent. Efforts to obtain crystals of X-ray quality of 6a, which is a liquid at room temperature, have thus far not been successful.

At -70 °C, the *ortho* and *meta*-fluorines of the axial C_6F_5 substituent of 15 appear as two resonances each (see Experimental Section). The *ortho*fluorine chemical shifts are more separated (2.2 ppm) to than the *meta*fluorines (1.0 ppm) owing to the greater difference in local environment of the ortho-fluorines in the frozen out structure which is expected to be similar to

Pig. 5. 19F NMR spectrum of **15** at 50 °C(a), 18 "CCb), 0 °C(c) and -40 °C(d).

that found in the solid state (Figure 2). The coalescence temperature (Figure 5) of the *ortho-fluorines* (36 °C) and the *meta-fluorines* (18 °C) indicate Δ G_{TC}* values of 57.3 and 56.4 kJ/mol,³⁷ respectively, for the C-Si bond rotation barrier.

The ¹H NMR spectrum of 15 is complicated by the diastereotopicity of the hydrogens imposed by the unsymmetrical rigidity of the framework. Not only do all three methyl groups display different chemical shifts, one of them is a doublet (**JFH** = 1.1 Hz) one is an unresolved multiplet and one is a singlet (see Experimental Section). The former multiplicity may be due to a five-bond F-H coupling involving F(12) and the protons on C(3) (2.840Â) in Figure 2. However, the proximity of these atoms to one another may favor throughspace coupling.³⁸ The broad CH_3 multiplet probably arises from the interaction of proton on C(9) with F(26) and F(15) in **15** (3.039 and 3.044 Â, respectively) (Figure 2). The CH_3 singlet seems best assigned to the protons $C(6)$ which is relatively distant from fluorine atoms in this structure(3.493 Å). The proton-decoupled 13 C NMR spectrum of this compound in the methyl region parallels the ¹H NMR spectrum in that there is a singlet, a doublet and a multiplet, the latter two resonances undergoing splitting by the nearby fluorines. There are also six singlets in the methylene carbon region, confirming their diastereotopicity in this rigid structure. We have shown that the cage moiety of 15 does not racemize up to 95 $^{\circ}$ C in toluene-d₈. Using IH DQF COSY 2DNMR spectroscopy along with a knowledge of the structure of 15, we were able to correlate the ¹H with the ¹³C chemical shift

$\delta^{13}C$	δ^1 H	carbon			
(ppm)	ppm	atoma			
methyl groups					
38.51(s)	2.14(s)	C(6)			
39.19 (m)	2.56(m)	C(9)			
42.26 (d)	2.60(d)				
methylene groups					
48.34	2.78 (A), 2.25 (A)	C(8)			
49.46	2.10 (C), 2.08 (C)	C(5)			
51.32	2.60 (D), 2.57 (D')	C(4)			
51.87	2.59 (E), 2.44 (E')	C(2)			
55.87	1.79 (B), 1.73 (B')	C(7)			
57.57	1.70 $(F), 1.51 (F')$	C(1)			

Table VII. Correlations of ¹H with ¹³C NMR Chemical Shifts in 15.

aThe carbon atom numbering scheme is that shown in Figure 2.

assignments. The two-bond $^{13}C^{-1}H$ couplings which manifest themselves in the correlation diagram in Figure 6 allow pairs of carbons to be identified for each **CH2CH2** bridge in the cage portion of **15** (Table VII). The following reasonability argument then allows us to correlate each CH₃ chemical shift with a pair of ethylene carbon shifts. The similarity of the CH₃ and the **CH2CH2** shifts of **13b,** the precursor of **15,** to one set of the analogous resonances in **15** suggests the correlation shown in Table VII. A second pair

Fig. 6. The 300 MHz ¹H-¹H DQF COSY 2D NMR spectrum of 15 (a). Pairs of ${}^{1}\text{H}$ multiplets associated with the same carbon are labeled A, A' or B, B', etc. The asterisk marks residual protons in the $C_6D_5CD_3$ solvent. . The 300 MHz 1H-13C HETCOR 2D NMR spectrum of 15 (b).

of CH_2CH_2 chemical shifts is somewhat different from those in the precursor compound **13b,** and they are associated with the remaining five-membered ring. The substituent methyl group of this ring possesses a carbon whose ^{13}C resonance appears as a multiplet owing to its proximity to $F(26)$ and $F(15)$ in Figure 2 (Table VII). The values of the remaining pair of CH_2CH_2 shifts are relatively different from those in **13b** and are assigned to the CH2CH2 portion of the seven-membered ring of **15** which is then correlated with the methyl substituent whose 13 C resonance appears as a doublet because of its proximity to F(12).

The ¹⁹F chemical shift and $^{1}J_{SiF}$ value for **14b** (-136.4 ppm) lies somewhat downfield of that reported for 37 $(-142.8 \text{ ppm}^{39})$ and $^1J_{\text{SiF}}$ for $14b$ (191.1 Hz) is larger than for **37** (131.2 Hz39). The higher 29Si-19F coupling value for **14b** could be taken to suggest the presence of a weaker transannular bond since that would allow the Si-F bond to acquire more s character. It should be noted, however, that the shorter transannular bond distance in **14b** contradicts this conclusion. The higher coupling in **14b** is not likely to stem from a greater positive charge on the silicon since the equatorial nitrogens are less electronegative than the equatorial oxygens in **37.** Although the CH2 δ^{13} C values are only ca. 1 ppm apart, their assignment is based on the threebond H_2CN SiF and H_3CN SiF couplings (1.5 and 8.0 Hz, respectively) observed in contrast to the lack of fluorine coupling to the carbon of the $N(CH_2)_3$ moiety. These couplings were assigned using the J-modulated spin-echo (APT) technique.⁴⁰ The δ^{19} F values for **13a** and **13b** are quite similar (see Experimental Section) indicating that any stereoelectronic changes induced

by the change in equatorial substituents and the cage are greatly attenuated at the fluorines.

Mass spectra measured under EI conditions reflect the expected order of Si-Z bond energies, namely, $Si-F > Si-O > Si-N > Si-C.⁴¹$ Thus Z = F, Cl and OR display molecular ion peaks and in fact this is the base peak for $Z = F$ (14b). When $Z = NR_2$, the molecular ion peak is barely detectable except for Z $= N(SiMe₃)₂$ (6a, 6b) wherein the Si-N(SiMe₃)₂ bond may be strengthened by *pi* delocalization (see earlier discussion). When $Z = alkyl$, the cage moiety cation generally provides the base peak. As expected CI mass spectra consistently display parent ion peaks.

ACKNOWLEDGMENTS

The authors are grateful to the NSF and the ISU Center for Advanced Technology Development for grant support of this work. They also thank Dr.Victor Young, Jr. of the Iowa State University Molecular Structure Laboratory for solving the molecular structures of **14b** and **15.**

 $\bar{\alpha}$

REFERENCES

- (1) Verkade, J. G. *Acc. Chem. Res.* 1993,*26,* 483.
- (2) For ease in associating compounds with structure types A and B, we place a lower case letter corresponding to the structure type with the compound number.
- (3) Luke vies, E,; Zelchan, G. L; Solomennikova, L L; Liepinsh, E. E.; Yankovska, L S.; Mazheika, L B. *J. Gen. Chem. USSR (Engl. Transi.)* 1977,47,98.
- (4) Gudat, G.; Verkade, J. G. *Organometallics* 1989, *8,* 2772.
- (5) Plass, W.; Verkade, J. G., unpublished results.
- (6) Le Grow, G. E. US Patent 3,576,026, 1971; *Chem. Abstr.* 1972, 75, 37252.
- (7) Shriver, D. F.; Drezdon, M. A. *The Manipulation of Air-Sensitive Compounds,* Wiely-Interscience: New York, 1986.
- (8) a) Dannley, M. L.; Lukin, M.; Shapiro, J. *J. Org. Chem.* 1955, *20,* 62. b) Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J. G. *Z. Anorg. Allg. Chem.* 1989,*578,* 75.
- (9) a) Amonoo-Neizer, E. H.; Shaw, R. A.; Skovlin, D. 0.; Smith, B. C. *Inorg. Synth.* 1966, *8,* 19. b) Bush, R. P.; Lloyd, N. C.; Dearce, C. A. *J. Chem. Soc. (A)* 1969,*253,* 808. c) Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. *Metal and Metalloid Amides,* Ellis Horwood Ltd. 1980.
- (10) a) Brewer, J. P. N.; Heaney, H. *Tetrahedron Letters* **1965,** 4709. b) Brewer, J. P. N., Eckhard, I. F.; Heaney, H.; Marples, B. A. *J. Chem. Soc.* **1967,** 567.
- (11) a) Harris, R. K.; Mann, B. E. *NMR and the Periodic Table,* Academic Press: New York, 1978. b) Jameson, C. J. in *Multinuclear NMR,* Mason, J. Ed., Plenum Press: New York, 1987.
- (12) Machazashvili, A. A.; Shklover, V. E.; Struchkov, Y. T. *J. Organomet. Chem.* **1988,** *349,* 23.
- (13) SHELXTL-Plus, Siemens Analytical X-ray Instruments, Inc., Madison, **WI.**
- (14) SHELXTL-93, *J. Appl. Cryst.* (1993) in preparation.
- (15) a) Voronkov, M. G.; Baryshok, V. P.; Petukhov, L. P.; Rakhlin, V. I.; Mirskov, R. G.; Pestunovich, V. A. *J. Organomet. Chem.* **1988,** *358,* 39. b) F rye, C. L.; Vincent, G. A.; Finzel, W. A. *J. Am. Chem. Soc.* **1971,** *93,* 6805. c) Voronkov, M. G.; Petukhov, L, P.; Vakulskaya T. L; Baryshok, V. P.; Tandura, S. N,; Pestunovich, V. A. *Izv. Akad. Nank SSSR, Ser. Khim.* **1979,** 1665.
- (16) Gudat, D,; Verkade, J. G. *J. Am. Chem. Soc.* **1989,** *111,* 8520.
- (17) Wiberg, N.; Schurz, K.; Reber, G; Muller, G. *J. Chem. Soc. Chem. Commun.* **1986,** 591.
- (18) a) The pK_a values for $HNEt_2$ (11.090) and $HN-i-Pr_2$ (11.13) are within experimental error, while the value for HNMeg is 10.992 (Peerin, D. D. *Dissociation Constants of Organic bases in Aqueous Solution, Supplement*; Butterworths: London, 1972). b) Since the pK_a of HN-*i*-Pr₂

(35.7) is ten orders of magnitude greater than the value of 25.8 measured for HN(SiMe₃)₂ in tetrahydrofuran using lithiated silylamines (Fraser, R. R.; Mansour, T. S.; Bavard, S. *J. Org. Chem.* **1985,** *50,* 3232) it is reasonable to pose the overall order shown.

- (19) pK_a values measured for carbanions give rise to the order $Ph < Me < t$ Bu- (43, 48, ~53, respectively; March, J. *Advanced Organic Chemistry,* John Wiley & Sons: New York, 1992). It is plausible to suggest that since the pK_a of the secondary carbanion Me₂CH⁻ in experiments was 51, and since n-Bu- is more basic than **CH3-** (Dessy, R. E.; Kitching, W.; Psarras, T.; Salinger, R.; Chen, A.; Chiers, T. J. *Am. Chem. Soc.* **1966,** *88,* 46) the order given is reasonable.
- (20) Norton, D. G.; Haury, V. E.; Davis, F C.; Mitchell, L. J.; Ballard, S. A. *J. Org. Chem.* **1953,** 1054.
- (21) Pawlenko, S. in *Houben-Weyl,* Bd XIII/5; George Thieme Verlag: Stuttgart, 1980, s. 227f.
- (22) Carré, F.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Nayyar, N. K.; Reyé, C. *Organometallics* **1990,***9,* 1989.
- (23) Cerveau, G.; Cuit, C.; Corriu, R. J. P.; Nayyar, N. K.; Reyé, C. *J. Organomet. Chem.* **1990,***389,* 159.
- (24) a) Cuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. *Chem. Rev.* **1993,** *93,* 1373 and references therein, b) Dieters, J. A.; Holmes, R. R, *J. Am. Chem. Soc.* **1990,***112,* 7197. c) Gordon, M. S.; Carrol, M. T.; Davis, L. P.; Burggraf, L. W. *J. Phys. Chem.* **1990,***194,* 8125.
- (25) Huheey, J. E. *Inorganic Chemistry,* 2nd ed., Harper & Row: New York, 1978.
- (26) a) Hoffman, R. W. *Dehydrobenzene and Cycloalkyne,* Academic Press: New York, 1967. b) Hankinson, B.; Heaney, H.; Sharma, R. P. *J. Chem. Soc., Perkin 1*1972, 2372. c) Oilman, H.; Gozsich, R. D. *J. Am. Chem. Soc.* 1957, *79,*2625.
- (27) Pârkânyi, L.; Hencsei, P.; Bihâtsi, L.; Millier, T. *J. Organomet. Chem.* 1984, 269, 1.
- (28) Kemme, A. A.; Bleidelis, J. J.; Pestunovich, V, A.; Baryshok, K. V. P.; Voronkov, M. G. *Dokl. Akad. Nauk. SSSR,* 1978,*243,* 688.
- (29) Selbst, E. A.; Shklover, V. E.; Struchkov, Yu. T.; Kashaev, A. A.; Demidov, M. P.; Gubanova, L. L; Voronkov, M. G. *Dokl. Akad. Nauk SSSR* 1981,*260,*107.
- (30) Klebe, G.; Nix, M.; Hensen, K. *Chem. Ber.* 1984,*117,* 797.
- (31) Schomburg, D.; Krebs, R. *Inorg. chem.* 1984,*23,* 1378.
- (32) Schomburg, D. *J. Organomet. Chem.* 1981, *221,* 137.
- (33) Bondi, A. *J. Phys. Chem.* 1964, *68,* 441. It should be recognized, however, that at least three lower values down to 2.69 Â have been proposed for this distance (Klaebe, G. *J. Organomet. Chem.* 1985, *293,* 147).
- (34) a) Laramay, M. A. H.; Verkade, J. G. *J. Am. Chem. Soc.* 1990,*112,* 9421. b) Laramay, M. A. H.; Verkade, J. G. *Z. Anorg. Allg. Chemie* 1991, *605,* 163.
- (35) Kupce, E.; Liepins, E.; Lapsina, A.; Zelcans, G.; Lukevics, E. *J. Organomet. Chem.* **1987,***333,***1.**
- (36) Woning, J.; Verkade, J. G. *J. Am. Chem. Soc.* **1991,***113,* 944.
- (37) Kemp, W. *NMR in Chemistry: A Multinuclear Introduction',* MacMillan Education Ltd.: London, 1986, 165 and Martin, M. L.; Delpuech, J. J.; Martin, G. J. *Practical NMR Spectroscopy;* Heyden: London, 1980, 291.
- (38) a) Hankinson, B.; Heaney, H.; Sharma, R. P. *J. Chem. Soc. Perkin I* **1972,** 2372. b) Gribble, G. W.; Douglas, J. R. *J. Am. Chem. Soc.* **1970,** *92,* 5764.
- (39) Pestunovich, V. A.; Tandura, S. N.; Voronkov, M. G.; Baryshok, V. P.; Zelchan, G. L; Glukhikh, V. L; Englegardt, G.; Witanowski, M. *Spectroscoy Lett.* 1978,*11,* 339.
- (40) Sanders, J. K. M.; Hunter, B. K. *Modern NMR Spectroscopy,* Oxford University Press: Oxford, New York, Frankfurt, 1990.
- (41) Pawlenko, S. *Organosilicon Chemistry,* Walter de Gruyter: Berlin, New York, 1986.

GENERAL SUMMARY

This thesis demonstrates that aminoazasilatranes are accessible via nucleophilic substitution reactions of chloroazasilatranes and various amide anions. The high volatility and exclusive coordination of silicon with five nitrogens in these compounds make them attractive candidates for evaluation as single-source silicon nitride precursors using MOCVD techniques. We also demonstrated interesting reactivities of various azasilatranes and several somewhat unexpected pathways in organosilicon chemistry, i.e.: a benzyne insertion reaction into a Si-N bond of an azasilatrane and hydride and fluoride transfer reactions in competition with nucleophilic substitution reactions at silicon of chloroazasilatranes.

Also observed in this work is a correlation of the 29 Si chemical shifts of various azasilatranes with the strength of the transannualr Si<-N bonds, which depends on the overall stereoelectronic environment around the central silicon and the apical group. A small size and high electonegativity of the apical functionalities is usually acompanied by upfield ^{29}Si shifts for the central silicon. This trend is more pronounced in the N,N',N" trimethylazasilatranes than in the unsubstituted counterpart. 1 H, 13 C, 29 Si, 19 F, DQF COSY and ¹H-¹³C HETCOR 2DNMR experiments together with Xray studies establish the structure of the insertion product as the first example of an azatrane with an expanded arm. A strong transannular bond (2.246 Â) is maintained even in the presence of the seven-membered ring. It also displays an appropriate geometry for the successful observation of 'through-space' ${}^{1}H-{}^{19}F$ and ${}^{13}C-{}^{19}F$ couplings.

This thesis also reports that azagermatranes can be easily synthesized by transamination reactions between tren or its derivatives and tris- (dimethylamino)germanes. The facile conversion of t -butyl-N,N',N"-trimethylazagermatrane in the presence of less sterically hindered tren into *t* -butylazagermatrane compared with the more demanding reaction conditions for the direct transamination between tren and t -BuGe(NMe₂)₃ suggests that the transmetalation pathway involving the complex exchange of multidentate ligand involves less activation energy than the transamination pathway. The longer transannular Ge<-N bond distances found here in azagermatranes than those in germatranes is consistent with the lower electronegativity of nitrogen than that of oxygen.

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Professor John G. Verkade for his valuable guidance, kind support, unusual patience, warm encouragement and the free research environment he provided throughout my graduate study.

I would like to express my gratitude to the following people:

Dr. Victor Young, Jr. for some of the crystallographic results reported in this thesis and helpful discussions.

Ms. Tieli Wang and Professor Robert A. Jacobson for their crystallographic determinations recorded in this manuscript.

Dr. Jiri Pinkas and Dr. Winfrid Plass for their helpful discussions and suggestions.

Drs. Dave Scott and Karen A, Smith for their assistance in multinuclear NMR spectroscopy.

Mrs. Jan Beane, Dr. Kamel Harrata and Charles Baker for mass spectral measurements.

Dr. Gordon Miller, Mark Smith, Dr. Yingzhong Su and Dr. Jianhua Lin for the use of their glove box for mounting air-sensitive crystals.

I would also like to extend my thanks to the following friends, the past and present members of Verkade group: Dr. Maochun Ye, Dr. Jiansheng Tang, Dongmei Wang, Dr. Zhibang Duan, Dr. Bingzhi Shi and Dr. C. F. Meyer Yao, Yong Han, Dr.Andrzej Wroblewski, Dr. Krzysztof Erdmann, Dr. T. Mohan, Dr. Martina Schmidt, Dr. Mark Mason, Dr. Mary Larmay, Dr. Ahmad Naiini, Dr. Jan Woning, Llorente Ting Bonaga, S. Geetha, Jong-Hwan Lee, Patrick Mclaughlin and Kurt Benkstein.

Finally, I would thank my father Qi-Nai Wan, my mother Xianglian Zheng, my brothers Yanshi Wan, Yancheng Wan, Gaolin Wan and other family members for their constant encouragement and caring.